

Time spectrum @ CEPC ECAL

Yuzhi Che, Manqi Ruan

Institute of High Energy Physics, Chinese Academy of Sciences

June 30, 2022, Beijing

Motivation: Time spectrum @ hit level

- Simulated in CEPC baseline ECAL
- 10 GeV γ , π^+ , μ^- with $\theta \sim 84^\circ$, $\phi = 0$
- B field: 0

10 GeV γ

Conventions:

- Hit time (t_{hit}) : time of the most energetic sub-hit in the cell
- Hit position: center of the cell
- Shifted time: $T_{\text{shift}} = t_{\text{hit}} L_{\text{IP} \rightarrow \text{hit}}/c$ $L_{\text{IP}\rightarrow\text{hit}}$: distance from the IP to hit position.

Interesting phenomenons:

- Zigzagging structure (0 ~ 3 ps)
- 2. Frontier < 0 (seems like faster than light)

The time of a sub-hit is defined by the Geant4 step: `G4double time = aStep->GetTrack()->GetGlobalTime();`

Motivation: Time spectrum @ hit level

Understand the hits faster than light

The position uncertainty causes bias on the shifted time.

 $T_{\rm shift} = t_{\rm hit} - L_{\rm IP \rightarrow hit}/c$

 $=\frac{1}{c}\left(\sqrt{R_{\text{inner}}^2 + (R_{\text{inner}}/\tan\theta)^2} - \sqrt{R_{\text{inner}}^2 + (R_{\text{inner}}/\tan\theta + d_{\text{cell}}/2)^2}\right)$

$$= \frac{R_{\text{inner}}}{c} \left(\sqrt{1 + \frac{1}{\tan^2 \theta}} - \sqrt{1 + (\frac{1}{\tan \theta} + \frac{d_{\text{cell}}}{2R_{\text{inner}}})^2} \right)^2$$
$$\sim - \left(\frac{R_{\text{inner}}}{c} \frac{d\sqrt{1 + x^2}}{dx} \Big|_{x = \frac{1}{\tan \theta}} \right) \cdot \frac{d_{\text{cell}}}{2R_{\text{inner}}}$$

 $-\frac{1}{0.299792} \text{ mm/ps} \times 0.0995 \times 5 \text{ mm} \sim -1.7 \text{ ps}$

Understand the zigzag structure

The position uncertainty causes bias on the shifted time, which is proportional to the position error(to first order):

$$T_{\text{shift}} = K \cdot d_{\text{sub-hit}}$$

where, $K = \frac{1}{c} \frac{d\sqrt{1 + x^2}}{dx} \Big|_{x = \tan \theta}$

mm

10.5

 ΔY

The space between two peaks:

$$\Delta T_{\rm shift} \sim K \cdot \Delta d_{\rm sub-hit}$$

 $= K \cdot \Delta Y / \tan \theta \sim 0.10, 0.35 \text{ ps}$

Demonstration: shot particles perpendicular to ECAL

Generate single particle with $\theta = 90^\circ$,

1) the zigzagging structure disappears, and 2) the frontier shifts latter.

Try other definitions of hit time and position

10 GeV charged pion

10 GeV muon

7

Sub-hit distribution inside cell

Shifted time versus relative position of the corresponding sub-hits.

Some artificial structures ...

Only 10 GeV Muon sample.

Sub-hit time vs. relative X, Y, Z: photon

Sub-hit time vs. relative X, Y, Z: charged pion

Sub-hit time vs. relative X, Y, Z: muon

11

Several conventions make difference on the time spectrum: 1.

1.1. Definition of hit time

- 1.1.1.the time of the most energetic sub-hit
- 1.1.2.the time of the fastest sub-hit
- 1.2. Definition of hit position
 - 1.2.1.center of the cell
 - 1.2.2.position of the corresponding sub-hit

1.3.Normalization (or shift) of the hit time

level.

Summary

2. Local geometry & the Geant4 modeling will induce artificial patterns in shower time spectrum on the ps

Back Up

Geometry of the CEPC baseline ECAL

The baseline electromagnetic calorimeter (ECAL) optimized for the CEPC:

longitudinal direction: 30 (= 20 + 10) Layers

- First section: **20 layers**
 - tungsten plate (2.1 mm) + silicon sensor $(0.5 mm \times (10 \times 10) mm^2)$
- Second section: **10 layers**
 - tungsten plate (4.2 mm) + silicon sensor $(0.5 mm \times (10 \times 10) mm^2)$

ECAL inner radius: 1847 mm

B Field: 3 T (set to 0 in this research)

14