Journées de Rencontres Jeunes Chercheurs 2022

Calibration of the Virgo gravitational waves detector using a Newtonian Calibrator

Antoine SYX - 2nd year PhD

JRJC 2022 - 24-28 October 2022

Gravitational Wave (GW)?

GW are space-time deformations generated by accelerated masses (ex: orbital binary mogettes), according to general relativity:

- System loses energy in space
- Emission as waves travelling at speed of light
- On earth: GW strain up to ~ 10⁻²¹ (compact objects in binary systems)

→ First direct observation in 2015 (by LIGO interferometers)

- Beams recombined after travelling through the 3 km arms
- A GW crosses the interferometer = infinitesimal arms length (L) variation
 - Interferometer signal correlated to the amplitude of the GW

Signal $h = \delta L/L$ with L=3km

See Virgo website for more information

The LIGO Virgo Kagra network GW travel through everything

- The distance is inversely proportional to the amplitude of the GW
- Calibration errors induce a bias on H_0

h calibration is done by moving a mirror by a well known amount:

- PCal: Photon Calibrator using the photons radiation pressure
 main calibration at LIGO, Virgo and KAGRA
- NCal: Newtonian Calibrator using gravitation to move the mirror

NCal principle and last observing run (O3) results

- Two rotating masses (rotor) close to the mirror
- Use the gravitational force to move the mirror
- No direct access to the mirror required

Point mass approximation:

$$F_{\text{beam axis}} \approx \frac{9GmMr^2}{2d^4}\cos(\Phi)\cos(2(\theta+\psi))$$

• The distance d is the main source of uncertainty followed by the rotor geometry

Parameter	NCal error [%]
NCal to mirror distance d	1.31
NCal to mirror angle Φ	0.19
NCal vertical position z	0.01
Rotor geometry	(0.53)
Modeling method	0.017
Mirror torque from NCal	0.03
Total	1.4

→ O3 NCal uncertainties (<u>D Estevez et al 2021</u> <u>Class. Quantum Grav. 38 075012</u>)

NCal for O4

6 NCals installed around the end mirror from October 2021 to July 2022:

- 5 NCals at 2f
 - 3 at same distance and 2 further away
- 1 NCal at 3f
 - Closest to the mirror
- → Finding the mirror position using NCals signal

NCal for signal at 3f_{rotor}

Top view of vacuum chamber

NCal installation

Pairs of NCals mounted on 3 suspended frames around the vacuum chamber:

- Monitoring of the position with position sensors on reference plates
- Reference plates position uncertainty from 0.4 mm to 0.9 mm

Template used for installation

NCal setup

Rotors careful productions and metrology

Design, machining and metrology of 7+1 rotors at IPHC using AI7075

Rotors: predicting the signal

→ Measure the geometry of each rotor to predict the signal induced in the interferometer using FEA with <u>MOGETTES</u>* software (density, radius, thickness, opening angle and asymmetry of the sectors)

*Massive Orbital and Gravitational Effects Through The Experimental Software

Measurements to FROMAGE layout: each element simulated with a 8x17x14 grid

Cloud of points extracted from FROMAGE simulation using a 16x65x40 grid

Rotors: predicting the signal

→ Measure the geometry of each rotor to predict the signal induced in the interferometer using FEA with <u>FROMAGE</u>* (density, radius, thickness, opening angle and asymmetry of the sectors)

Measurements to FROMAGE layout: each element simulated with a 8x17x14 grid

Cloud of points extracted from FROMAGE simulation using a 16x65x40 grid

*Finite element analysis of ROtating MAsses for Gravitational Effects

NCal rotor uncertainty

R4-01 rotor parameter advanced model (23°C)			NCal 2f signal uncertainty		
name	mean value	uncertainty	formula	value (%)	
Density ρ (kg.m ⁻³)	2808.1	0.2	$\delta \rho / \rho$	0.007	
Thickness b left sector (12 sub-sectors) (mm) Thickness b right sector (12 sub-sectors) (mm)	104.322 104.307	$1.3 imes 10^{-2}$	$\delta b/b$	0.012	
r_{max} left sector (8 ext sub-sectors) (mm) r_{max} right sector (8 ext sub-sectors) (mm)	104.031 104.040	1.0×10^{-2}	$4\delta r_{max}/r_{max}$	0.037	
$G (m^3.kg^{-1}.s^{-2})$	6.67430×10^{-11}	$1.5 imes 10^{-15}$	$\delta G/G$	0.002	
Temperature T (°C)	23	3	$\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$	0.014	
Modelling Uncertainty					
FROMAGE grid uncertainty					
Opening angle and sector asymmetry uncertainty					
Remaining geometry uncertainty					
Total uncertainty from the rotor (quadratic sum)					

→ Done for 7+1 rotors

NCal overall estimated uncertainty for next observing run (O4)

O3

O4 expectations

Parameter	NCal error [%]	
NCal to mirror distance d	1.31	│───► < 0.4%
NCal to mirror angle Φ	0.19	< 0.1%
NCal vertical position z	0.01	
Rotor geometry	0.53	
Modeling method	0.017	< 0.1%
Mirror torque from NCal	0.03	
Total	1.4] ───► < 0.5%

NCal frequency range and Virgo sensitivity

NCals rotation: up to 80 Hz -> signal up to 160 or 240 Hz

Conclusion and perspectives

- NCal system ready for O4 run (starting march 2023)
- Expected accuracy of the injected NCal signal below 0.5 %
- ... Start preparing O5 setup soon

Calibration will be even more challenging in the future

Range of detection of interferometers for different operating runs (see https://emfollow.docs.ligo.org/userguide/capabilities.html#sensitivity)

Thank you !

Backup

Mirrors suspensions

Elements of a suspension

Amplitude of a rotor at 2f

$$a(f_{2rot}) = \frac{9G\rho_{rot} \ b \ \sin(\alpha)(r_{max}^4 - r_{min}^4)}{32\pi^2 f_{2rot}^2 d^4} \cos(\phi) \Big[1 + \frac{25}{54d^2} \frac{(r_{max}^6 - r_{min}^6)}{(r_{max}^4 - r_{min}^4)} + \Big(\frac{45}{8} \sin^2(\phi) - \frac{5}{2}\Big) \Big(\frac{r_{mir}}{d}\Big)^2 + \Big(\frac{15}{8} \cos^2(\phi) - \frac{25}{24}\Big) \Big(\frac{x_{mir}}{d}\Big)^2 - \frac{25}{72} \Big(\frac{b}{d}\Big)^2 \Big]$$
(42)

Detectors range and units

Detector			
Detector	BNS	NSBH	BBH
LIGO	110–130	190-240	990-1200
Virgo	50	90	500
KAGRA	8-25	15-45	80-260

These ranges are given for the following fiducial signals:

BNS

A merger of two $1.4M_{\odot}$ NSs.

NSBH

A merger of a $10M_{\odot}$ BH and a $1.4M_{\odot}$ NS.

BBH

```
A merger of two 30M_{\odot} BHs.
```

Units conversion:

Mpc = Megaparsec Ly = light year

1 Mpc = 3.262e+6 ly = 3.086e+22 m

The Milky Way is 10e+5 ly wide (0.03 Mpc) The Andromeda galaxy is 0.765 Mpc away

Virgo sensitivity curve noise

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern