Angular analysis of the $B_s \to \phi e^+e^-$ decay in the very-low q^2 bin in LHCb

Gaelle KHREICH, Guillaume PIETRZYK, Marie-Hélène SCHUNE

24 Octobre 2022

The Standard Model of Particle Physics

Standard Model: the theory describing elementary particles and their interactions

- Extremely powerful: experimentally tested from low-energy phenomena (~ 1 eV) up to the electroweak scale ($\sim 100 \text{ GeV}$)...
- . . . but incomplete! Describes only 5% of the universe
- Many unsolved questions: dark matter, dark energy, neutrino masses, matter-antimatter asymmetry. . .

Flavour Changing Neutral Current as $b \rightarrow s l l^{-1}$ transitions in the standard model only possible via loop or box diagrams (Penguins Diagrams)

- \rightarrow Highly suppressed : Decay Probability in order of $10^{-6} 10^{-10}$
- \rightarrow New particles can enter the loop and modify physics observables

 \sim \sim \sim

Effective-Hamiltonian approach

∼ Fermi's description of the neutron decay.

Different $q^2(m_{l+l-}^2)$ regions probe different processes.

NP enters here Operator encoding $C_i = C_i^{SM} + C_i^{NP}$ Lorentz structure $\mathcal{H}_{\text{eff}} = \frac{-4G_F}{\sqrt{2}} \cdot \frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \sum_i C_i O_i + \text{h. c.}$ $i = 1,2$ Tree i=3-6,8 Gluon penguin i=7 Photon Penguin i=9,10 Electroweak penguin

i=S,P Scalar/ Pseudoscalar Penguin

Rare decays : $b \rightarrow s l l$ transitions

Rich phenemology:

- Branching Ratios (but large theoretical uncertainties)
- Angular observables
- Ratios of BF (test of Lepton Universality)

The Gamma Penguin

One very interesting $b \rightarrow s$ process is the penguin diagram with a photon

You can find the Gamma Penguin with a real photon (radiative decay) or with a virtual photon in $b \rightarrow s l l$ processes

Muons need at least $\sqrt{q^2} = 2 m_\mu$

 \rightarrow With electrons you can go lower in q^2 and isolate the gamma penguin

- It's a detector in the forward region
- Oriented to studies of the B-physics
- It's composed by (Run1-Run2):
	- Tracking System: VELO, Trigger Tracker, Dipole Magnet and 3 Tracking stations.
	- Particle Identification System: RICH, ECAL, HCAL and Muon stations

The Analysis - $B_s^0 \to \phi(\to K^+K^-)e^+e^-$

Angular observables are predicted more precisely than Banching Fractions.

 \checkmark Angular Analysis at low q^2 gives access to photon polorazition, a sensitive probe for New Physics.

The Analysis- 3 Angles

The direction of the four outgoing particles can be described by three angles.

 θ_l : defined as the angle between the direction of the e^- and the direction of flight of the B_s^0 in the dielectron rest frame.

 θ_K : defined as the angle between the direction of K^- and the direction of flight of B_s^0 in the K^-K^+ rest frame.

 ϕ : defined as the angle between the plane containing the two leptons and the plane containing the two hadrons of the final state in the B_s^0 rest frame.

$$
\left\langle \frac{d^3 \Gamma}{d \cos \theta_l d \cos \theta_k d\phi} \right\rangle = \frac{9}{16\pi} \left\{ \frac{3}{4} \left(1 - F_L \right) \sin^2 \theta_k + F_L \cos^2 \theta_k \right. \\ \left. + \left[\frac{1}{4} \left(1 - F_L \right) \sin^2 \theta_k - F_L \cos^2 \theta_k \right] \cos 2\theta_l \right. \\ \left. + \frac{1}{2} \left(1 - F_L \right) A_T^{(2)} \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi \right. \\ \left. + \left(1 - F_L \right) A_T^{ReCP} \sin^2 \theta_k \cos \theta_l \right. \\ \left. + \frac{1}{2} \left(1 - F_L \right) A_T^{ImCP} \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \right\}
$$

 $F_L, A_T^{(2)}, A_T^{ImCP}$ and A_T^{ReCP} ² are related to Wilson Coefficients

 ${}^{2}F_{L}$ is the longitudinal polarisation, $A_{T}^{(2)}$, A_{T}^{ImCP} are sensitive to the photon polarization and A_T^{RecP} related to the forward-backward asymmetry

Key Observables

 A_T^{Im} and A_T^{ReCP} are our key observables:

- They are sensitive to the photon polarization.
- They are predicted to be close to zero in the Standard Model.
- Can be large in the presence of New Physics contributions.

Figure 5: Distributions of the ϕ angle from pseudo-experiments, generated with the SM predictions on the left $(A_T^{(2)} = 0)$ and with a different value of $A_T^{(2)}$ (=0.5) on the right.

Way Towards the Measurement

Looks simple? But many things to consider:

- Bremsstrahlung effects
- Different types of Background
- Corrections to the simulation
- Systematic uncertainties

Problem 1: Bremsstahlung

- It's the interaction with the detector material
- Probability goes with $E/m^2 \to$ mainly affecting electrons
- A recovery procedure is in place to improve the momentum reconstruction:

Drawbacks:

- \rightarrow The Calorimeter energy resolution is worse than tracking resolution
- −→ Presence of energy deposits mistaken as bremsstrahlung photons
- −→ Some unrecovered Bremstrahlung photons.

Several sources of Background:

- Combination of random tracks $(\rightarrow$ Machine Learning Technique?)
- MisIdentification of the final-state particles (\rightarrow Particle identification and Kinematics requirements?)
- Peaking Background (\rightarrow Veto or Include their distribution in your fitting model?)

Problem 2: Background (Converted Photons)

Photons can interact with the material of the detector and convert into an e^+e^- pair.

Solution?

Problem 2 : Background (Converted Photons)

Two cuts to remove these photons

Velo Cut Conversion happens when the photon interacts with the material of the detector \rightarrow remove events having the dielectron vertex compatible with being in the detector material.

DEDX cut

2e tracks from γ conversion end up in the same VELO strips (almost co-linear) \rightarrow reject events having twice the ADC count of usual charged tracks.

Reducing to $\approx 1\%$ contamination

Problem 2: Background (Combinatorial)

The most significant background is coming from random combinations of final-state particles.

 \rightarrow Solution? Train a Boosted Decision Tree to distinguish between the Signal (From Simulation) and the Background (From Data Sidebands) events

Problem 2: Background (Combinatorial)

Input: 8 Kinematics and geometery variables

The analysis relies on MC simulation for some tests and studies. BUT the LHCb MC is known to not perfectly reproduce the data.

 \rightarrow the simulated samples have to be corrected.

Problem 3: Simulation

The aim of our angular analysis is to measure the four observables $F_L, A_T^{(2)}, A_T^{RecP}$ and A_T^{ImCP} . The total fit PDF is:

 $fs \times PDF_{Signal}(m, \theta_l, \theta_K, \phi) + (1 - fs) \times PDF_{Background}(m, \theta_l, \theta_K, \phi)$

The reconstruction and selection of signal candidates induces a distortion in the angular distributions.

- Get the Angular Acceptance from MC that is generated with flat angles after applying the selection
- Multiply the signal angular PDF by this acceptance

 $PDF_{Signal}(m, \theta_l, \theta_K, \phi) \rightarrow PDF_{Signal}(m, \theta_l, \theta_K, \phi) \times \epsilon(\theta_l, \theta_K, \phi)$

- Investigate specific backgrounds.
- Optimize the Selection and the BDT.
- Continue with the mass and Angular PDFs.

. Nominal chain of corrections to simulation:

