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The Standard Model of Particle Physics

Standard Model: the theory describing elementary particles and their
interactions

o Extremely powerful:
experimentally tested from
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Electoweak Penguin Decays

Flavour Changing Neutral Current as b— sll ! transitions in the standard
model only possible via loop or box diagrams (Penguins Diagrams)
— Highly suppressed : Decay Probability in order of 1076 — 10710
— New particles can enter the loop and modify physics observables
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Effective-Hamiltonian approach

{J+

~ Fermi’s description of the neutron decay.

Different ¢?(m?,,_) regions probe different processes.

Hgr = 20 € VV*ZCO +h
= —_— :0; .C.
eff \/Z 16712 tbVts i/: i 1 —1.9 "I‘\ree
-
NP enters here ~ Operator encoding 123-678 Gluon penguin

C;=C™ + cN?  Lorentz structure

i=7 Photon Penguin
i=9,10 Electroweak penguin

i=S,P Scalar/ Pseudoscalar Penguin
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Rare decays : b — sll transitions

Rich phenemology:

e Branching Ratios (but large theoretical uncertainties)

o Angular observables
o Ratios of BF (test of Lepton Universality)
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The Gamma Penguin

One very interesting b — s process is the penguin diagram with a photon
+&:§i
t
b s
w

You can find the Gamma Penguin with a real photon (radiative decay) or with

a virtual photon in b — sll processes

s
photon
pole

w

Contributes a very low g
q%* > go as low as

- possible in g to select
it

¢ (Gev?)
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Muons need at least \/¢% = 2 m,
— With electrons you can go lower in ¢? and isolate the gamma penguin
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LHCb detector

e It’s a detector in the forward region

e Oriented to studies of the B-physics

e It’s composed by (Runl-Run2):
o Tracking System: VELO, Trigger Tracker, Dipole Magnet and 3 Tracking

stations.

o Particle Identification System: RICH, ECAL, HCAL and Muon stations
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The Analysis - BY — ¢(— KTK )ete”

Angular observables are predicted more precisely than Banching Fractions.
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v Angular Analysis at low ¢? gives access to photon polorazition, a sensitive
probe for New Physics.
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The Analysis- 3 Angles

The direction of the four outgoing particles can be described by three angles.

0;: defined as the angle between
the direction of the e~ and the
direction of flight of the B? in the
dielectron rest frame.

Ok defined as the angle between
the direction of K~ and the direc-
tion of flight of B? in the K~ K+
rest frame.

¢: defined as the angle between
the plane containing the two lep-
tons and the plane containing the
two hadrons of the final state in the
BY rest frame.
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The Analysis - 4 Angular Parameters
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Fr, Ag? ), ALmCP and AReCP 2 are related to Wilson Coefficients

2Fy, is the longitudinal polarisation, A;?), Aéwmcp are sensitive to the photon

polarization and A?ECP related to the forward-backward asymmetry
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Key Observables

AIm and AReCP are our key observables:
@ They are sensitive to the photon polarization.
@ They are predicted to be close to zero in the Standard Model.

e Can be large in the presence of New Physics contributions.
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Figure 5: Distributions of the ¢ angle from pseudo-experiments, generated with the
SM predictions on the left (A(q?) = 0) and with a different value of A(TQ) (=0.5) on the
right.
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Way Towards the Measurement

Your Pian
REeALITY e ]

Looks simple? But many things to consider:

Bremsstrahlung effects

Different types of Background

Corrections to the simulation

Systematic uncertainties
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Problem 1: Bremsstahlung

o It’s the interaction with the detector material
o Probability goes with E/m? — mainly affecting electrons

A recovery procedure is in place to improve the momentum reconstruction:

ECAL

Magnet
Ey
Upstream DHsw st Femm
brem T brem
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Drawbacks:

— The Calorimeter energy resolution is worse than tracking resolution
— Presence of energy deposits mistaken as bremsstrahlung photons
— Some unrecovered Bremstrahlung photons.
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Problem 2: Background

Several sources of Background:
e Combination of random tracks (— Machine Learning Technique?)

e Misldentification of the final-state particles (— Particle identification and
Kinematics requirements? )

e Peaking Background (— Veto or Include their distribution in your fitting
model?)
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Problem 2: Background (Converted Photons)

Photons can interact with the material of the detector and convert into an

ete™ pair.

| SAME FINAL STATE MEASURED BY THE DETECTOR |

¢
Bs /
s

REAL PHOTON
CONVERSION

¢
VIRTUAL
PHOTON

| BR x 2 ORDERS OF MAGNITDE |
Solution?
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Problem 2 : Background (Converted Photons)

Two cuts to remove these photons

DEDX cut
2e tracks from 7 conversion end up in
the same VELO strips (almost co-linear)
— reject events having twice the ADC
count of usual charged tracks.

Velo Cut
Conversion happens when the photon in-
teracts with the material of the detector
— remove events having the dielectron
vertex compatible with being in the
detector material.

Bs_DTF_PV_M
¥ bin: No cuts
¥ bin: Both cuts

1

5100 5150 5200 5250 5300 5350 5400 5450 5500

Reducing to =~ 1% contamination
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Problem 2: Background (Combinatorial)

The most significant background is coming from random combinations of
final-state particles.

— Solution? Train a Boosted Decision Tree to distinguish between the Signal
(From Simulation) and the Background (From Data Sidebands) events
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Problem 2: Background (Combinatorial)

Input: 8 Kinematics and geometery variables
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Problem 3: Simulation

The analysis relies on MC simulation for some tests and studies.
BUT the LHCb MC is known to not perfectly reproduce the data.

— the simulated samples have to be corrected.
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Problem 3: Simulation
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Towards the Angular Analysis

The aim of our angular analysis is to measure the four observables
Fr, AR, ABCP ang ALmOP.
The total fit PDF is:

fS X PDFSignal(magla aKa ¢) + (]- - f&) X PDFBackground(nL', elv 9K7 Qb)

The reconstruction and selection of signal candidates induces a distortion in
the angular distributions.

o Get the Angular Acceptance from MC that is generated with flat angles
after applying the selection

e Multiply the signal angular PDF by this acceptance
PDFSignal(m7 9l7 aKv ¢) — PDFSignal(ma 917 0[(7 ¢) X 6(9la aKa ¢)
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What needs to be done

e Investigate specific backgrounds.
@ Optimize the Selection and the BDT.
o Continue with the mass and Angular PDFs.
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Backup- Correction Chain

Prior Chain
(LOM inclusive only)

a-G-en-0-;--0

Nominal Chain
o Nominal chain of corrections to simulation:
wpip PIDCalib package for kaons, pions and muons, and Fit&Count® tool for electrons

WTracking Correct for electron detection efficiency using tag and probe method
Wmure.kin  BDT-based reweighting of B kinematics and multiplicity, evaluated from LOM samples

wio Data/simulation ratios of LO efficiencies evaluated with the TISTOS method
WHLT Data/simulation ratios of HLT efficiencies evaluated with the TISTOS method
WReco BDT-based reweighting of B reconstruction properties (x3rx and x3p)
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