
Jet Calibration and 
Search for Vector-Like Quark

decaying into top+Higgs in hadronic final state
using Run 2 CMS data with Neural Network

Oct 25, 2022
Jieun Choi
IP2I Lyon

October 25, 2022 ji.eun.choi@cern.ch 1



2

Introduction to CMS detector
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CMS experiment has many layers to detect different kinds of objects

The CMS detector slice…

Tracker / ECAL / HCAL / Muon detector

cms.cern

https://cms.cern/news/how-cms-detects-particles
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Jet in CMS experiment
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What is a Jet ?
- Particle Object from Hadronization

- Quarks and Gluons cannot exist freely due to color confinement
- Form color-neutral hadrons à a shower of hadrons

- In theoretical calculation or Monte-Carlo simulation:
- The final state stable particles

- In the real experiment:
- Energy block having finite position / energy resolution

https://cms.cern/news/jets-cms-and-determination-their-energy-scale
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Jet in CMS experiment
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How we build up a Jet in CMS

Detector Clustering

Particle Flow

Jets / MET Clustering

Calibration & Tagging

Analysis

• Grouping energy deposit in Calorimeter

• Building particles by linking all sub-detectors
• Subtract additional energy from low energy

proton-proton collisions

• Grouping PF particles with given cone size

• Determine Jet Energy Scale and Resolution
• Flavor + Heavy object tagging algorithm

• Comparison of data and simulation
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Jet in CMS experiment
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Jet Energy Correction in CMS

- Factorized approach
- Subtract additional energy from collisions happening simultaneously (Pileup ↑)
- Compensate non-linear response of calorimeter (+ Angular differences)
- Residual corrections from Data and MC Comparison

A better understanding of the scale uncertainties
à more precise measurements possible!

Reconstructed 
Jets

MC

Pileup
MC + RC

Response (pT , η)

MC

Residuals (η)
dijets

Residuals (pT )
𝛾/Z + jet, MJB Calibrated 

Jets

Applied to data

Applied to simulation

Illustration by: 
Garvita Agarwal

DP-2021/033

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsDP2021
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Jet in CMS experiment
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Response with Run 3 data
- Response distribution with respect to alpha variation

- Response: Leading jet pT / photon pT
- Alpha: sub-leading jet pT / photon pT

- In Ideal case (MC): 1 photon – 1 jet back-to-back à Response ~ 1, Alpha ~ 0
- HCAL issue observed: miscalibration arise lower energy reconstruction ~ 70 %
- By doing such study, we can validate the data in early stage

Work in progress
Run2022C+D EGamma 𝛼 < 0.3

𝛼 < 0.2

𝛼 < 0.1

𝛼 < 0.01

We need to understand “Jet”!

γ
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𝑗
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Motivation
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What is a Vector-Like Quark?
- Vector-like: Spin = 1
- Evaluate many underlying models:

- Stabilize the Higgs boson mass
- Offers a potential solution to the hierarchy 

problem
…

T’ decay in full hadronic final state
- T’ decaying into top and Higgs

- t → Wb → qqb
- H→ bb

- Main background: 
- ttbar in hadronic decay (tt → bbqqqq)
- multi-jet event (QCD)

Search for Vector Like Quark in hadronic final states
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Strategy
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Analysis using 2016 data in CMS
- Excess in T’ mass @ 700 GeV is observed!

à Might be able to improve significance with NN
using Run2 data (even Run 3)

Cut-based method à Neural Network
- Cut-based method: Categorizing events with a certain “selection” criterion on a data
- Selections are already optimized based on kinematic information for maximizing 

significance

Feed these information to neural network!

JHEP 01 (2020) 036

🤔

https://link.springer.com/article/10.1007/JHEP01(2020)036
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Analysis using 2016 data in CMS
- Excess in T’ mass @ 700 GeV is observed!

à Might be able to improve significance with NN
using Run2 data (even Run 3)
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Feed these information to neural network!
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Strategy
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Target Process
- Signal and Background Classification

Neural Network details
- Structure: Simple DNN (3 layers with 100 nodes)
- Input set:

- T’ signal MC sample (M=700 GeV) : ttbar hadronic decay = 1:1
- 80 % for training, 20 % for validation

- Input features: 33
- low-level features (angular position in the detector, energy of jets, …)
- high-level features (features used in cut-based, angle between jets, ...)

Background: ttbar hadronic decaySignal: T’àtH hadronic decay
DNN Structure:

3 layers with 100 nodes
Dropout: 0.2

Activation: relu+sigmoid
Optimizer: Adam

Loss: binary_crossentropy
Batch size: 2048
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Current Status
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- Overtraining check: 
- Make sure if model is working not only on training set, but also on the real data
- Check Loss curve + output distribution from Training and Validation set
- Overtraining has not occurred!

Will perform on data too!



Receiver Operating Characteristic curve

NN works better than cut-based method even without any optimization!
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Current Status
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On evaluation set Cut 0 (baseline criteria) à

Cut 6 à
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Current Status
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Study on input features
- Initial question:

- How should we determine which physics observables are “more important”?
- Which input feature has the largest impact on the NN output node?

Methodology
- Talyor expansion of the output function at the minima (model)

- arXiv:1803.08782
- Calculate gradients of output(node) w.r.t. inputs(event)
- Extract average gradient for each input features
- Will be able to ”see” how much each variable “effects” on training model

Which are “good” and “bad” observables?

https://arxiv.org/abs/1803.08782


Feature importance from Talyor expansion
- 1st order gradient: 

- Physical location of feature/marginal distributions: weight w_i for x_i
- 2nd order gradient:

- Gradient of each element of the source w.r.t target: weight w_ij for x_i * x_j
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Current Status
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On evaluation set
Normalized by 1

On evaluation set
Normalized by 1
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Conclusion
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• Jet Calibration is important for data analysis.

• Analysis of Search for Tprime in Hadronic Final state is ongoing, 
while excess to 2016 CMS data was observed.

• Improving the significance of Tprime analysis using Neural 
Network is under study.
• Has more performance than the cut-based method

• To do list:
• Add more feature candidates and check the importance
• Add other mass variation T’ M=600 ~ 1200 GeV for training
• Hyperparameter optimization
• Adapt Graph Neural Network / parameterized Neural Network
• Continue working on Run 3 data



BACKUP
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Introduction
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Large Hadron Collider

• The LHC is a particle accelerator that 
pushes protons to near the speed of 
light

• It consists of a 27 km ring of 
superconducting magnets with 
accelerating structures that boost the 
energy of the particles along the way

• It produces lots of particle physics 
phenomena from proton-proton 
collisions at the center of mass energy 
= 13 TeV
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Introduction
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Compact Muon Solenoid
• The CMS detector is located at one of 

the four collision points in LHC

• With 15 meters high and 21 meters 
long, CMS is “compact” for all 
detectors it contains

• It has the most powerful solenoid 
magnet ever made

• The discovery of Higgs boson at CMS 
and ATLAS detector in 2012 
completed standard model

• However, some phenomena still exist 
that are not described by standard 
models
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Slice of CMS detector
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The CMS detector slice…

Tracker / ECAL / HCAL / Muon detector
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Particle Flow
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How we reconstruct jet in CMS
- Calorimeter based approach
- Jet-Plus-Track approach: Calorimeter jet + tracks

- Particle Flow approach
- Reconstruct each particle individually in the event

based on information from all sub-detectors
- Jet composition:

~ 65% charged hadrons
~ 25% photons
~ 10% neutral hadrons

Detector
⇌

Particle Flow

https://indico.in2p3.fr/event/14415/#2-pflow-in-cms by Florian Beaudette in Particle Flow Day @ LLR
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How to avoid bias in NN
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Target Process
- Signal and Background Classification

Strategy
- Train on Tprime700 Hadronic + TTToHadronic (1:1 training)
- Selection for DNN: HLT + njets >= 6 + nbjets (DeepJet Medium) >= 3
- Compare ROC curves with cutBased (signal efficiency vs background rejection)

- Evaluate NN at the level of Cut 0 for the pair comparison

ttbar hadronic decayTprime

even oddà à
: After Cut 0 à for Evaluation 

: After DNN Cut à for Training 

Training
sample
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Overtraining check
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Detail
- Trained in CC server (CPU without slurm - Training time: 10ms/epoch)
- Input set : Half of TprimeBToTH_M-700 after selection (odd numbered event, 23210 

entries)
- 80 % for training, 20 % for validation
- Keep even numbered event for evaluation: to avoid bias (using the same event) for 

performance estimation
- Epoch: 100 à Validation Loss / Acc are stable, does not diverge yet

DNN Structure:
3 layers with 100 nodes

Dropout: 0.2
Activation: relu+sigmoid

Optimizer: Adam
Loss: binary_crossentropy

Batch size: 2048



Strategy
- Trained in CC server (Training time: 1s 8ms/epoch)
- Do the same with more statistics from different mass range
- Train on signal samples M=600~1200 GeV (181724 entries (M700 entries * 7))

+ TTToHadronic
- With the same input features, same architecture (but more epoches)
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Training with more statistics
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DNN Structure:
3 layers with 100 nodes

Dropout: 0.2
Activation: relu+sigmoid

Optimizer: Adam
Loss: binary_crossentropy

Batch size: 2048
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ROC cureves
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Evaluation
- Evaluation is performed in Cut 0 with odd numbered events

- Performance is slightly increased
- M-{600,700,….,1200} GeV samples were used
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Feature importance
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Motivation
- Initial question: What are the input features with the largest impact on the NN output nodes?
- Extract average gradient for each input features
- Will be able to ”see” how much each variable “effects” on training model
- arXiv:1803.08782

Methodology
- Talyor expansion of the output function at the minima (model)
- Tensorflow.GradientTape()

- Allow us to record the history of operations applied to target input features
- Calculate gradients of output(node) w.r.t. inputs(event)

- 1st order: Physical location of feature/marginal distributions – weight w_i for x_i
- 2nd order: Curvature of NN output function - correlations across two features: Gradient of 

each element of the source w.r.t target – weight w_ij for x_i * x_j

https://arxiv.org/abs/1803.08782
https://www.tensorflow.org/guide/advanced_autodiff
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Correlation Matrices
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Physics observables in cut-based method 
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