

Jet Calibration and Search for Vector-Like Quark decaying into top+Higgs in hadronic final state using Run 2 CMS data with Neural Network

Oct 25, 2022

Jieun Choi

IP2I Lyon

Introduction to CMS detector

CMS experiment has many layers to detect different kinds of obj

Introduction to CMS detector

CMS experiment has many layers to detect different kinds of obj

What is a Jet ?

- Particle Object from Hadronization

- Quarks and Gluons cannot exist freely due to color confinement
- Form color-neutral hadrons \rightarrow a *shower* of hadrons
- In theoretical calculation or Monte-Carlo simulation:
	- The final state stable particles
- In the real experiment:
	- Energy block having finite position / energy resolution

https://cms.cern/news/jets-cms-and-determination-their-energy-scale

How we build up a Jet in CMS

- Grouping energy deposit in Calorimeter
- Building particles by linking all sub-detectors
- Subtract additional energy from low energy proton-proton collisions
- Grouping PF particles with given cone size
- *Determine Jet Energy Scale and Resolution*
- Flavor + Heavy object tagging algorithm
- Comparison of data and simulation

Jet Energy Correction in CMS

- Factorized approach
	- Subtract additional energy from collisions happening simultaneously (Political)
	- Compensate non-linear response of calorimeter (+ Angular differences
	- Residual corrections from Data and MC Comparison

A better understanding of the scale uncertainties \rightarrow more precise measurements possible!

Response with Run 3 data

- Response distribution with respect to alpha variation
	- Response: Leading jet pT / photon pT
	- Alpha: sub-leading jet pT / photon pT

- In Ideal case (MC): 1 photon 1 jet back-to-back \rightarrow Response ~ 1, Alpha ~ 0
- HCAL issue observed: miscalibration arise lower energy reconstruction \sim 70 %
- By doing such study, we can validate the data in early stage

We need to understand "Jet"!

Motivation

Search for Vector Like Quark in hadronic final states

What is a Vector-Like Quark?

- Vector-like: Spin = 1
	- Evaluate many underlying models:
		- Stabilize the Higgs boson mass
		- Offers a potential solution to the hierarchy problem

T' decay in full hadronic final state

- T' decaying into top and Higgs
	- $t \rightarrow Wb \rightarrow qqb$
	- $-H \rightarrow bb$

…

- Main background:
	- ttbar in hadronic decay (tt \rightarrow bbqqqq)
	- multi-jet event (QCD)

Strategy

Analysis using 2016 data in CMS

- Excess in T' mass @ 700 GeV is observed!
- \rightarrow Might be able to improve significance with NN using Run2 data (even Run 3)

Cut-based method \rightarrow Neural Network

Cut-based method: Categorizing events with a certain "selection" criterion

Selections are already optimized based on kinematic information for maxim significance bottom

Strategy

Analysis using 2016 data in CMS

- Excess in T' mass @ 700 GeV is observed!
- \rightarrow Might be able to improve significance with NN using Run2 data (even Run 3)

Cut-based method \rightarrow Neural Network

Cut-based method: Categorizing events with a certain "selection" criterion

Selections are already optimized based on kinematic information for maxim significance Higgs/Z bottom

Strategy

Target Process

- Signal and Background Classification

Neural Network details

- Structure: Simple DNN (3 layers with 100 nodes)
- Input set:
	- T' signal MC sample (M=700 GeV) : ttbar hadronic decay = $1:1$
	- 80 % for training, 20 % for validation
- Input features: 33
	- low-level features (angular position in the detector, energy of jets, ...)
	- high-level features (features used in cut-based, angle between jets, ...)

Signal: $T' \rightarrow tH$ hadronic decay Background: ttbar hadronic decay

DNN Structure: 3 layers with 100 nodes Dropout: 0.2 Activation: relu+sigmoid Optimizer: Adam Loss: binary_crossentropy Batch size: 2048

- Overtraining check:
	- Make sure if model is working not only on training set, but also on the real data
	- Check Loss curve + output distribution from Training and Validation set
	- Overtraining has not occurred!

Will perform on data too!

Receiver Operating Characteristic curve

NN works better than cut-based method even without any optimization!

Study on input features

- Initial question:
	- How should we determine which physics observables are "more import
	- Which input feature has the largest impact on the NN output node?

Which are "good" and "bad" observables?

Methodology

- Talyor expansion of the output function at the minima (model)
	- arXiv:1803.08782
	- Calculate gradients of output(node) w.r.t. inputs(event)
	- Extract average gradient for each input features
	- Will be able to "see" how much each variable "effects" on training

Feature importance from Talyor expansion

- 1st order gradient:
	- Physical location of feature/marginal distributions: weight w_i for x_i
- 2nd order gradient:
	- Gradient of each element of the source w.r.t target: weight w_ij for $x_i * x_j$

Conclusion

- Jet Calibration is important for data analysis.
- Analysis of Search for Tprime in Hadronic Final state is ongoing, while excess to 2016 CMS data was observed.
- Improving the significance of Tprime analysis using Neural Network is under study.
	- Has more performance than the cut-based method
- To do list:
	- Add more feature candidates and check the importance
	- Add other mass variation T' M=600 \sim 1200 GeV for training
	- Hyperparameter optimization
	- Adapt Graph Neural Network / parameterized Neural Network
	- Continue working on Run 3 data

Introduction

Large Hadron Collider

- The LHC is a particle accelerator that pushes protons to near the speed of light
- It consists of a 27 km ring of superconducting magnets with accelerating structures that boost the energy of the particles along the way
- It produces lots of particle physics phenomena from proton-proton collisions at the center of mass energy $= 13$ TeV

Introduction

Compact Muon Solenoid

- The CMS detector is located at one of the four collision points in LHC
- With 15 meters high and 21 meters long, CMS is "compact" for all detectors it contains
- It has the most powerful solenoid magnet ever made
- The discovery of Higgs boson at CMS and ATLAS detector in 2012 completed standard model
- However, some phenomena still exist that are not described by standard models

Slice of CMS detector

Particle Flow

How we reconstruct jet in CMS

- Calorimeter based approach
- Jet-Plus-Track approach: Calorimeter jet + tracks
- Particle Flow approach
	- Reconstruct each particle individually in the event based on information from all sub-detectors
	- Jet composition:
		- ~ 65% charged hadrons
		- ~ 25% photons
		- \sim 10% neutral hadrons

gen. jet 1

How to avoid bias in NN

Target Process

Signal and Background Classification

Strategy

- Train on Tprime700 Hadronic + TTToHadronic (1:1 training)
- Selection for DNN: $HLT + njets >= 6 + n objects$ (DeepJet Medium) $>= 3$
- Compare ROC curves with cutBased (signal efficiency vs background rejection)
	- Evaluate NN at the level of Cut 0 for the pair comparison

Overtraining check

Detail

- Trained in CC server (CPU without slurm Training time: 10ms/epoch)
- Input set : Half of TprimeBToTH_M-700 after selection (odd numbered event, 23210 entries)
	- 80 % for training, 20 % for validation
	- Keep even numbered event for evaluation: to avoid bias (using the same event) for performance estimation
	- Epoch: $100 \rightarrow$ Validation Loss / Acc are stable, does not diverge yet

Training with more statistics

Strategy

- Trained in CC server (Training time: 1s 8ms/epoch)
- Do the same with more statistics from different mass range
- Train on signal samples $M=600-1200$ GeV (181724 entries (M700 entries $*$ 7)) + TTToHadronic
- With the same input features, same architecture (but more epoches)

ROC cureves

Evaluation

Evaluation is performed in Cut 0 with odd numbered events

- Performance is slightly increased
- M-{600,700,….,1200} GeV samples were used

Feature importance

Motivation

- Initial question: What are the input features with the largest impact on the NN o
- Extract average gradient for each input features
- Will be able to "see" how much each variable "effects" on training model
- arXiv:1803.08782

Methodology

- Talyor expansion of the output function at the minima (model)
- Tensorflow.GradientTape()
	- Allow us to record the history of operations applied to target input features
	- Calculate gradients of output(node) w.r.t. inputs(event)
- 1st order: Physical location of feature/marginal distributions weight w i for x i
- 2nd order: Curvature of NN output function correlations across two features: G each element of the source w.r.t target – weight w_ij for x_i * x_j

$$
\langle t_{\alpha} \rangle = \frac{1}{N} \sum_{k=1}^{N} \left| t_{\alpha} \left(\left\{ x_{j}^{(k)} \right\} \right) \right|
$$

- : Sample size N_{\rm}
- Taylor coefficient labeled by α t_{α} $\ddot{\cdot}$
- $\langle t_{\alpha} \rangle$ is the arithmetic mean of $|t_{\alpha}|$, evaluated on the whole input space the test data set.
- Introduce nomenclature of generalized features of the input feature sp

```
1. order feature of input space (-1) order deta
\alpha = x_1, x_2, \ldots2. order feature of input space (\sim 2. order details
\alpha = x_1 x_1, x_1 x_2, \ldots\alpha = x_1x_1x_1, x_1x_1x_2, \ldots 3. order feature of input space (~3. order der
```


Physics observables in cut-based method

October 25, 2022 **julie:** Determine the property of the proper