

1

Machine learning and imaging approaches to improve the AGATA position resolution

Mojahed Abushawish, Jeremie Dudouet, Guillaume Baulieu, Olivier Stezowski Institut de Physique des deux infinis de Lyon (IP2I) JRJC 2022

In -beam Gamma -ray spectroscopy: Doppler correction

In -beam Gamma -ray spectroscopy: Doppler correction

AGATA: Advanced GAmma Tracking Array

- Consists of 50 HPGe detectors(40 has been used in site and 180 are planned to complete 4π sphere).
	- \checkmark High efficiency due to the continuous HPGe crystals.
	- \checkmark State of the art energy resolution 2keV at 1.33MeV.
- Capable of tracking Gamma-rays.
	- \checkmark Accurate Doppler correction.
	- \checkmark Better photopeak to background ratio.

AGATA: highly segmented HPGe

- Electronic segmentation.
	- \checkmark No physical segmentation of the crystal(no dead layers between the segments).
	- \checkmark Increases the detection efficiency.
- Allows for accurate measurement of the interaction point of the gamma ray.

PSA: Pulse Shape Analysis algorithm

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

- Simulated databases of signals are built for each crystal.
	- \checkmark Each database has a 2mm Cartesian grid of points.
	- \times 700-2000 Points per segment.
- An adaptive grid search is used to find the point with the closest simulated signal to the measured one.
	- \checkmark A wide grid is first evaluated.
	- \checkmark Then a full grid search is done to the voxel with the closest signal.

The tracking of the gamma ray

- Gamma-ray are tracked back to the source using Compton diffusion formula.
	- \checkmark Allows for the determination of the first interaction point.
		- \checkmark Accurate Doppler correction.
	- \checkmark Improve the photopeak to background ratio.

AGATA capabilities

The tracking method reduces the low energy background significantly.

Doppler correction with PSA + Tracking 10

11

Improving the PSA

- To improve the PSA we need to improve the databases.
	- \checkmark By improving the simulations.
	- \vee By replacing the simulations with experimental data.
	- \checkmark In both cases we need experimental databases.
- Experimental databases were produced at Strasbourg.
	- \checkmark To produce the databases the crystal had to be scanned.
	- \checkmark Scanning the crystal means that we measure signals at every point of the crystal.
	- \checkmark A prototype crystal was scanned
	- $\sqrt{ }$ The source used is 137Cs.

The scanning process

- 1 vertical (X, Y) and 1 horizontal (X, Z) scan.
- To get a 3D databases, a *χ*2 analysis of both datasets is done.
- **This method has been validated and** published but it's very time consuming (5 days for the PSCS analysis)

Neural networks to produce the 3D databases

13

14

Neural networks: LSTM

- ▶ 2 Long short-term memory (LSTM) layers were used.
	- \vee LSTMs can process sequences of data like the signals.
	- \checkmark Are very robust and are not affected by time misalignments.
- The loss function was calculated only for the two known axis, this allows the network to learn patterns of each dataset without affecting the other.

Data preparation

- The data must be homogenous to avoid bias from the neural network.
	- \checkmark Only 10 signals/voxel are kept.
	- \times 500k signals per scan in total.
- Gate on the 662KeV photopeak and selection of segment multiplicity of 1.
	- \checkmark To avoid Compton scattering signals and assure the signals at the right position.
- Remove dummy signals.

Analysis of neural network results

- The two known axis are compared with the predictions of the network.
- The bad predictions can be due to bad signals.
- ▶ Only the predictions with error on the known axis of less than 1mm are kept.

Neural network results: Vertical scan distribution 17

Neural network results: Horizontal scan distribution

18

Neural network results: Vertical Signals 19

Neural network results: Horizontal signals 20

21

PSCS method signals

22

Neural network Vs PSCS

Imaging using Compton scattering

24

Imaging using an optimizer

- The scattering angle can be calculated from the energy and from the position.
- Minimizing the difference between the two will give the source position

Difference between the calculated compton angle using the energy and the position

Imaging using Compton scattering

Imaging of a source located at (0,0,50)mm in the sphere of AGATA

Experimental position error Two times the experimental position error Experimental position error with bad tracking

Conclusions and prospects.

- The neural network 30 minutes for training and 1 hour to process the two scans compared to 5 day.
- Since we can't know what is the exact position of a signal, it's complicated to determine which method is more accurate.
- We developed a fast imaging method using Compton scattering to characterize the PSA.
- The imaging method will be used to characterize the results of the neural network.
- This work can open the door for neural network PSA.

Thank you for your attention \odot

Imaging using Compton scattering

Imaging using 3D histograms 28

Results of the minimizer with experimental data ²⁹

- This source run was conducted during GANIL campaign in the autumn of 2021.
- The source used is Eu located at (0,0,-55)mm.

Tracking Z position at the center 175 150 125 $\frac{15}{9}$ 100 75 50 25 -60.0 -57.5 -55.0 -52.5 -50.0 -47.5 -45.0 -42.5 -40.0 Z/mm

FWHM: 4.5mm 3.83mm 3.78mm

Analysis of neural network results

▶ Only 2% of the predicted segments were wrong.

30

Neural network results

The Strasbourg scanning tables

- A motorized collimator with a 10*μm* precision.
- A system allowing the placement of the detector in vertical and horizontal positions.
- A laser alignment system.
- Detector scanned in this work: the symmetric S001 crystal, with a 137Cs source.

