Dense matter within RHF approaches

Presented by: Mohamad CHAMSEDDINE

In collaboration with:

Jérôme MARGUERON, IP2I Lyon (PhD advisor)
Guy CHANFRAY, IP2I Lyon (co-PhD advisor)
Hubert HANSEN, IP2I Lyon
Rahul SOMASUNDARAM, LANL USA

<u>OUTLINE</u>

Motivation for Relativistic approaches

Neutron stars

RMF with Chiral symmetry and Confinement (RMF-CC)

Results

Conclusions and outlooks

Phase diagram of QCD

 The state of matter at high densities remains a mystery (quark-gluon plasma, hyperons, color superconductivity, ...)

- QCD is perturbative but at ~40n_{sat}!!
- No theory applies in the regime of low-T and large densities.

Watts et al. '16

Neutron stars

- The remnant of massive dead stars
- Densest matter in the universe:
 6-8 times saturation density!
- Excellent laboratory to study dense matter

Their core remains a mystery

NS observables

 R_{NS} (km)

- We solve the hydrostatic equations in GR for spherical and nonrotating stars (TOV equations).
- The family of solutions with unique mass M and radii R are generated by varying the central density ρc, BUT THIS REQUIRES AN EQUATION OF STATE!
- We can extract tidal deformabilities from gravitational waves (LIGO/VIRGO) or compactness from X-ray measurements (e.g NICER)

Tidal deformability

$$\Lambda \equiv \frac{\lambda}{m^5} = \frac{2}{3}k_2 \frac{R^5}{m^5} = \frac{2}{3}k_2 C^{-5}$$

With k_2 the gravitational Love number and C the compactness.

It quantifies how easily the star is deformed when subject to an external tidal field. It shows up as a "dephasing" of the wavefront of the GW signal.

NICER

- Installed on the ISS in 2017
- Can detect X-ray emissions from NS

Why Relativistic approaches?

- Many models for nuclear matter exist, with chiral effective theory being one of them: a
 perturbative expansion with a hierarchy of leading orders
 - Advantages: systematic addition of higher-order contributions, which allows us to know at which density our expansion should stop (χ EFT ~ $2n_{sat}$).
 - Disadvantages: breaks down at $\sim 2n_{sat}$, whereas we need to describe nuclear matter at higher densities.
- At high density, we need a **relativistic approach** since the sound speed in NS cores is expected to be larger than 10% of the light speed, as revealed by analyses of recent radio as well as X-ray observations from NICER of massive NSs.
 - Advantages: can go beyond 2n_{sat}.
 - Disadvantages: no simple way to decide where the model breaks down, or to quantify the uncertainties.

What is RMF-CC?

- An effective model describing the nuclear interaction as an exchange of mesons.
- A lagrangian based on chiral symmetries from QCD and confinement of quarks (anchored to QCD).
- The mesons field will be decomposed as such:

What is RMF-CC?

1) Chiral symmetry

 At the limit of zero quark masses (u,d & s), QCD has a chiral symmetry (non-interacting quarks with opposite parity are indistinguishable and do not couple to each other)

• Had the symmetry been realised in nature, we would have observed for each meson, a partner meson with the SAME mass but opposite

parity \rightarrow the symmetry is broken

The radial component corresponds to the σ meson of Walecka, first identified by Chanfray (PRC 63 (2001)), and the phase component corresponds to the massless Goldstone boson, the pion

But since the quarks have a small mass, the symmetry is also explicitly broken and the pion acquires a small mass!

What is RMF-CC?

2) Confinement

- It is well established that in QCD, only colour neutral objects can be observed
- Since in our model, the nucleons are considered the "elementary particles", this effect should be taken into consideration
- In Guichon's work (*Guichon, Phys. Lett. B 200 (1988)*), the quarks wave functions get modified by the scalar field → the nucleon mass depends on the surrounding scalar field:
- We parametrize the nucleon mass as:

$$M_N(s) = M_N + g_S s + \left(\frac{1}{2} \kappa_{NS} \left(s^2 + \frac{s^3}{3 f_\pi}\right)\right)$$
 Nucleon polarisation

The response parameters, g_s , κ_{NS} , might be given by an underlying quark confining model (confinement mechanism)

The chiral Lagrangian

$$\mathcal{L} = ar{\Psi} i \gamma^{\mu} \partial_{\mu} \Psi + \mathcal{L}_s + \mathcal{L}_{\omega} + \mathcal{L}_{
ho} + \mathcal{L}_{\delta} + \mathcal{L}_{\pi}$$

Meson	(J^{Π},T)	Field	interaction
σ	$(0^+,0)$	scalar-isoscalar	middlerange attraction
ω	$(1^-,0)$	vector-isoscalar	shortrange repulsion
ho	$(1^-,1)$	vector-isovector	isospin part of nuclear force
δ	$(0^+,1)$	scalar-isovector	isospin part of nuclear force

$$egin{aligned} \mathcal{L}_s &= -M_N(s)\Psi\Psi - V(s) + rac{1}{2}\partial^\mu s\partial_\mu s \ \mathcal{L}_\omega &= -g_\omega\omega_\muar{\Psi}\gamma^\mu\Psi + rac{1}{2}m_\omega^2\omega^\mu\omega_\mu - rac{1}{4}F^{\mu v}F_{\mu v} \ - & \mathcal{L}_
ho &= -g_
ho
ho_{a\mu}ar{\Psi}\gamma^\mu au_a\Psi - g_
horac{\kappa_
ho}{2M_N}\partial_v
ho_{a\mu}\Psiar{\sigma}^{\mu v} au_a\Psi \ + rac{1}{2}m_
ho^2
ho_{a\mu}
ho_a^\mu - rac{1}{4}G_a^{\mu v}G_{a\mu v} \ \mathcal{L}_\delta &= -g_\delta\delta_aar{\Psi} au_a\Psi - rac{1}{2}m_\delta^2\delta^2 + rac{1}{2}\partial^\mu\delta\partial_\mu\delta \ \mathcal{L}_\pi &= rac{g_A}{2f}\partial_\muarphi_{a\pi}\Psi\gamma^\mu\gamma^5 au_a\Psi - rac{1}{2}m_\pi^2arphi_{a\pi}^2 + rac{1}{2}\partial^\muarphi_{a\pi}\partial_\muarphi_{a\pi}. \end{aligned}$$

with: V(s) a typical "Mexican hat" potential from the linear sigma model

The chiral Lagrangian

- 4 unknown parameters: m_s , g_s , g_w & C They can be fixed by:
- lattice QCD (see Somasundaram +, Eur.Phys.J.A 58 (2022) 5, 84)

$$M_N(m_\pi^2) = a_0 + a_2 m_\pi^2 + a_4 m_\pi^4 + \Sigma_\pi(m_\pi, \Lambda).$$

■ nuclear saturation properties ($E_{sat} = -15.8 \, MeV$, $n_{sat} = 0.155 \, fm^{-3}$)

$$a_2 = \frac{g_s f_{\pi}}{m_{\sigma}^2}$$
 $a_4 = -\frac{f_{\pi} g_s}{2m_{\sigma}^4} \left(3 - 2C \frac{M_N}{f_{\pi} g_s}\right)$

• κ_{ρ} is not well-known: The pure vector dominance model (VDM) implies the identification of κ_{ρ} with the anomalous part of the isovector magnetic moment of the nucleon (i.e., κ_{ρ} = 3.7, weak ρ scenario). However, pion-nucleon scattering data suggest κ_{ρ} = 6.6 (strong ρ scenario) (*G. Hohler and E. Pietarinen, Nucl. Phys. B95, 210 (1975)*.

Results

1) Hartree level (no pion)

(Somasundaram +, Eur.Phys.J.A 58 (2022) 5, 84)

Short-Range-Correlation (SRC)

- The model being an effective one, doesn't have a good resolution at short ranges, where we expect it to start to break
- Short range effects should be treated by hand, but maintaining as much as possible a connection with underlying microscopic descriptions
- We use the Jastrow function approach: the mesons' propagators are convoluted with a correlation function forbidding the presence of 2 nucleons at the same point

Short-Range-Correlation (SRC)

- They can be mainly seen for the pion and tensor ρ channels
- Experiments show that the pion term should be repulsive at short ranges, the scale at which we don't have a good resolution

Results

2) Hartree Fock level + SRC

M. Chamseddine, et al., in progress

Results

$\kappa_{-}\rho$ = 6.6	Hartree level	Hartree-Fock level	Hartree-Fock with SRC	Experimental values
С	1.40	1.66	1.40	
g_s	11	13.53	10.99	
$m_{\scriptscriptstyle S}$	820	911	821	
g_w	6.5	5.84	6.97	
E_{sym}	18	19.36	24.73	32 <u>+</u> 2
K _{sat}	265	306	295	230 <u>±</u> 20

Conclusions:

- HF+SRC seems to be heading towards the right direction vis-à-vis the experimental data
- The model at its current state is not ready yet to be extrapolated to higher densities for applications to neutrons stars

Outlooks

- The inclusion of higher order correction in the pion channel, also known as the « pion cloud » which could decrease K_{sat} closer to its experimental value and also lower the value of the coupling constants which is also a desired effect in models
- A more microscopic treatment of SRC using the UCOM method

THANK YOU