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OUTLINE

Motivation for Relativistic approaches

Neutron stars

RMF with Chiral symmetry and Confinement (RMF-CC)
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Conclusions and outlooks



Phase diagram of QCD

Watts et al. ‘16
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INSIDE A NEUTRON STAR Neutron stars

A NASA mission will use X-ray spectiroscopy to gather clues about the
interior of neutron stars — the Universe's densest forms of matter.
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NS observables

We solve the hydrostatic equations in GR for spherical and nonrotating stars (TOV equations).

The family of solutions with unique mass M and radii R are generated by varying the central density pc, BUT THIS

REQUIRES AN EQUATION OF STATE |

We can extract tidal deformabilities from gravitational waves (LIGO/VIRGO) or compactness from X-ray

measurements (e.g NICER)
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Tidal deformability
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With k, the gravitational Love number
and C the compactness.

It quantifies how easily the star is
deformed when subject to an external
tidal field. It shows up as a “dephasing”
of the wavefront of the GW signal.

Gravitational-wave strain
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NICER

* Installed on the ISS in 2017
e Can detect X-ray emissions from NS
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Why Relativistic approaches ?

 Many models for nuclear matter exist, with chiral effective theory being one of them: a
perturbative expansion with a hierarchy of leading orders

e Advantages : systematic addition of higher-order contributions, which allows us to know at which density
our expansion should stop (XEFT ~ 2n_,,).
e Disadvantages: breaks down at ~ 2n_,,, whereas we need to describe nuclear matter at higher densities.

e At high density, we need a relativistic approach since the sound speed in NS cores is
expected to be larger than 10% of the light speed, as revealed by analyses of recent radio as
well as X-ray observations from NICER of massive NSs.

e Advantages : can go beyond 2n_,.
* Disadvantages: no simple way to decide where the model breaks down, or to quantify the uncertainties.



What is RMF-CC?

* An effective model describing the nuclear interaction as an exchange
of mesons.

e A lagrangian based on chiral symmetries from QCD and confinement
of quarks (anchored to QCD).

* The mesons field will be decomposed as such:

Pr = @p+ Agpg

N

Ground state expectation value, Small

i.e classical value=» Hartree level fluctuations=» Fock
level



What is RMF-CC?
1) Chiral symmetry

e At the limit of zero quark masses (u,d & s), QCD has a chiral symmetry

(non-interacting quarks with opposite parity are indistinguishable and
do not couple to each other)

 Had the symmetry been realised in nature, we would have observed

for each meson, a partner meson with the SAME mass but opposite
parity = the symmetry is broken

The radial component corresponds to the o meson of
Walecka, first identified by Chanfray (PRC 63 (2001)), and

the phase component corresponds to the massless Goldstone
boson, the pion

But since the quarks have a small mass, the symmetry is also
explicitly broken and the pion acquires a small mass!
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What is RMF-CC?

2) Confinement

|t is well established that in QCD, only colour neutral objects can be observed

e Since in our model, the nucleons are considered the “elementary particles”, this
effect should be taken into consideration

* In Guichon’s work (Guichon, Phys. Lett. B 200 (1988)), the quarks wave functions
get modified by the scalar field = the nucleon mass depends on the surrounding
scalar field:

e We parametrize the nucleon mass as: The response

parameters, g;, Kys, might
Nucleon be given by an underlying
polarisation quark confining model
(confinement mechanism)

Mpu(5) = My + g5s5 +




The chiral Lagrangian

L=Tiv"0,V + L+ Lo+ Ly, + L5+ Ly

Meson (J" T) Field interaction

(0",0) scalar-isoscalar middlerange attraction
(1,0) vector-isoscalar shortrange repulsion
(17,1) vector-isovector isospin part of nuclear force
(07,1) scalar-isovector isospin part of nuclear force
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with: V(s) a typical “Mexican hat” potential from the
linear sigma model
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The chiral Lagrangian

4 unknown parameters: mg, g5, gy & C

They can be fixed by:
lattice QCD ( see Somasundaram +, Eur.Phys.J.A 58 (2022) 5, 84)

M {mi} = dy + d» mi + ¢y m_‘_t + X (m,, A)

nuclear saturation properties (Eqq; = —15.8 MeV,ng,e = 0.155 fm™3)

sJ mds [ . ] ﬂL /
(o = J. f qg — —:f gl 3—2C v
m2 2m4 fr0s

K, is not well-known: The pure vector dominance model (VDM) implies the
identification of k, with the anomalous part of the isovector magnetic moment of the nucleon (i.e., k,,

= 3.7, weak p scenario). However, pion-nucleon scattering data suggest k, = 6.6 (strong p scenario) (G.
Hohler and E. Pietarinen, Nucl. Phys. B95, 210 (1975).
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Results

1) Hartree level (no pion)

'_|_ . '_‘_|_| f 1_I_I_I |_ | . — ——l r |_._|—| _,—J_
1.45 150 155 1.60 —0.54 —0.52 —0.50 —0.4¢
a» [Gev~1] aa [Gev—3]
M
R
] _I_‘. T 4 T T '|. l I_l
5 6 7 8 750 800 850 900 950

PDF

PDF

(Somasundaram +, Eur.Phys.J.A 58 (2022) 5, 84)

I [
,- ]
| p |
0.82 0.84 0.86 0.88 240 260 280
MJ /My Ksat [MeV]
I | L
—— . —l"— — -
1.2 1.4 1.6 10 12 14

ds 14




Short-Range-Correlation (SRC)

 The model being an effective one, doesn’t have a good resolution at
short ranges, where we expect it to start to break

e Short range effects should be treated by hand, but maintaining as
much as possible a connection with underlying microscopic
descriptions

* We use the Jastrow function approach: the mesons’ propagators are
convoluted with a correlation function forbidding the presence of 2
nucleons at the same point



Short-Range-Correlation (SRC)

* They can be mainly seen for the pion and tensor p channels

e Experiments show that the pion term should be repulsive at short
ranges, the scale at which we don’t have a good resolution
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Results
2) Hartree Fock level + SRC
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Results

M. Chamseddine, et al., in progress

K_p=6.6 Hartree level Hartree-Fock Hartree-Fock Experimental
level with SRC values
C 1.40 1.66 1.40
Js 11 13.53 10.99
mg 820 911 821
Iw 6.5 5.84 6.97
Ecym 3212
K.q¢ 230120
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Conclusions:

e HF+SRC seems to be heading towards the right direction vis-a-vis the
experimental data

 The model at its current state is not ready yet to be extrapolated to higher
densities for applications to neutrons stars

Outlooks

* The inclusion of higher order correction in the pion channel, also known as the
« pion cloud » which could decrease Kg,; closer to its exFerlmen’gaI value and
als%lolwer the value of the coupling constants which is also a desired effect in
models

e A more microscopic treatment of SRC using the UCOM method
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