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What is the significance of these extra dimensions?

Historically: A path to unification?

But dilaton field? Unstable R? Weak force? Strong force?

Why do we consider extra-dimensional scenarios?
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What is the significance of these extra dimensions?

Today: A path to physics BSM?

• 1980s: “KK renaissance”, 1984 “superstring revolution”

• 1998: Arkani-Hamed, Dimopoulos, Dvali: large EDs

But dilaton field? Unstable R? Weak force? Strong force?

Why do we consider extra-dimensional scenarios?
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dimensions; electric and magnetic field lines cannot spread into
the higher-dimensional space. The wall has only three dimen-
sions, and as far as these particles are concerned, the universe
might as well be three-dimensional. Only gravitational field lines
can extend into the higher-dimensional space, and only the par-
ticle that transmits gravity, the graviton, can travel freely into
the extra dimensions. The presence of the extra dimensions can
be felt only through gravity.

To make an analogy, imagine that all the particles in the
Standard Model, like electrons and protons, are billiard balls
moving on the surface of a vast pool table. As far as they are
concerned, the universe is two-dimensional. Nevertheless,
pool-table inhabitants made out of billiard balls could still de-
tect the higher-dimensional world: when two balls hit each oth-
er sufficiently hard, they produce sound waves, which travel in
all three dimensions, carrying some energy away from the table
surface [see illustration on page 68]. The sound waves are anal-
ogous to gravitons, which can travel in the full higher-dimen-
sional space. In high-energy particle collisions, we expect to ob-
serve missing energy, the result of gravitons escaping into the
extra dimensions.

Although it may seem strange that some particles should be
confined to a wall, similar phenomena are quite familiar. For in-
stance, electrons in a copper wire can move only along the one-
dimensional space of the wire and do not travel into the sur-
rounding three-dimensional space. Likewise, water waves trav-
el primarily on the surface of the ocean, not throughout its depth.
The specific scenario we are describing, in which all particles ex-
cept gravity are stuck to a wall, can arise naturally in string the-
ory. In fact, one of the major insights triggering recent break-
throughs in string theory has been the recognition that the the-
ory contains such walls, known as D-branes (“brane” comes
from the word “membrane,” and “D” stands for “Dirichlet,”
which indicates a mathematical property of the branes). D-branes
have precisely the required features: particles such as electrons
and photons are represented by tiny lengths of string that each
have two end points that must be stuck to a D-brane. Gravitons,

on the other hand, are tiny closed loops of string that can wan-
der into all the dimensions because they have no end points an-
choring them to a D-brane.

Is It Alive?
ONE OF THE FIRST THINGS good theorists do when they
have a new theory is to try to kill it by finding an inconsisten-
cy with experimental results. The theory of large extra dimen-
sions changes gravity at macroscopic distances and alters oth-
er physics at high energies, so surely it is easy to kill. Remark-
ably, however, it does not contradict any known experiment.
A few examples show how surprising this conclusion is.

One might initially worry that changing gravity would af-
fect objects held together by gravity, such as stars and galaxies.
But they are not affected. Gravity changes only at distances
shorter than a millimeter, whereas in a star, for example, grav-
ity acts across thousands of kilometers to hold distant parts of
the star together. 

A much more serious concern relates to gravitons, the hy-
pothetical particles that transmit gravity in a quantum theory.
In the theory with extra dimensions, gravitons interact much
more strongly with matter, so many more of them should be
produced in high-energy particle collisions. In addition, they
propagate in all the dimensions, thus taking energy away from
the wall, or membrane, that is the universe where we live.

When a star collapses and explodes as a supernova, the high
temperatures can readily boil off gravitons into extra dimen-

70 S C I E N T I F I C  A M E R I C A N T H E  O N C E  A N D  F U T U R E  C O S M O S

OUR UNIVERSE MAY EXIST ON A WALL, or membrane, in the
extra dimensions. The line along the cylinder (below, right) and the
flat plane represent our three-dimensional universe, to which all the known
particles and forces except gravity are stuck. Gravity (red lines)
propagates through all the dimensions. The extra dimensions may be as
large as one millimeter without violating any existing observations.

Gravity
Our 3-D universe

Gravity

Extra dimensions

COPYRIGHT 2002 SCIENTIFIC AMERICAN, INC.

Taken from ADD’s 2002 Scientific American article, “The universe’s unseen dimensions”



What is the significance of these extra dimensions?

Today: A path to physics BSM?

• 1980s: “KK renaissance”, 1984 “superstring revolution”

• 1998: Arkani-Hamed, Dimopoulos, Dvali: large EDs

• 1999: Randall & Sundrum: warped EDs

...

Why do we consider extra-dimensional scenarios?
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Taken from E. Pontón’s 2011 TASI lectures, “TeV scale EDs”



Negatively-curved EDs: a BSM landscape of untapped potential?

Phenomenological implications:

• natural resolution to the hierarchy problem

→ volume grows exponentially with ℓG/ℓc

→ RSI-like KK mass spectrum w/o light KK modes

• zero modes of Dirac operator emerges w/o gauge breaking

• enables homogeneity & flatness of observed universe

Why the negativity?
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Any Lie group G of dimension d can be understood as a d-dimensional
differentiable manifold. To compactify solvable G, we quotient by the lattice Γ.

For nilpotent groups, the resultant twisted torus is a nilmanifold.

Wikimedia Commons, Torus & Twisted torus

Negatively-curved extra dimensions: the nilmanifold
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Any Lie group G of dimension d can be understood as a d-dimensional
differentiable manifold. To compactify solvable G, we quotient by the lattice Γ.

For nilpotent groups, the resultant twisted torus is a nilmanifold.

[Zb,Zc] = f a
bc Za , f a

bc = −f a
bc

R = −1
4
δad δ

bc δcgf a
bc f d

cg

Wikimedia Commons, Torus & Twisted torus

Negatively-curved extra dimensions: the nilmanifold
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Heisenberg algebra...

[Z1,Z2] = −fZ3 , [Z1,Z3] = [Z2,Z3] = 0

e1 = r1dy1 , e2 = r2dy2 , e3 = r3(dy3 + Nr1dy2) , N =
r1r2

r3 f

Wikimedia Commons, Torus & Twisted torus

Negatively-curved extra dimensions: the nilmanifold
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Heisenberg algebra...

[Z1,Z2] = −fZ3 , [Z1,Z3] = [Z2,Z3] = 0

de3 = fe1 ∧ e2 , de1 = 0 , de2 = 0

e1 = r1dy1 , e2 = r2dy2 , e3 = r3(dy3 + Nr1dy2) , N =
r1r2

r3 f

...gives us the metric ds2
H = gHij dxidxj

Wikimedia Commons, Torus & Twisted torus

Negatively-curved extra dimensions: the nilmanifold
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• Limits on R from Deviations in Gravitational Force Law
• Limits on R from On-Shell Production of Gravitons: δ = 2
• Mass Limits on MTT

• Limits on 1/R = Mc

• Limits on Kaluza-Klein Gravitons in Warped Extra Dimensions
• Limits on Kaluza-Klein Gluons in Warped Extra Dimensions
• Black Hole Production Limits
− Semiclassical Black Holes
− Quantum Black Holes

ATLAS, CMS, DELPHI, ALEPH, CDF, D0, OPAL, etc.

Constraining EDs

9/37 A. Chrysostomou Searching for extra dimensions in gravitational waves





Using new techniques to probe underexplored BSM landscapes...

Some empty space

Objective
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(i) (iii)

(ii)

(i)    inspiral(ii)  merger(iii) ringdown

B. P. Abbott et al., PRL 116, 061102 (2016).

Quasinormal mode: "ringdown"
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The birth of black hole perturbation theory:

gµνdxµdxν = −f (r)dt2 + f (r)−1dr2 + r2 (dθ2 + sin2 θdϕ2)
gµν → g′µν = gµν + hµν (gµν ≫ hµν)

1957: Regge and Wheeler’s grav. perturbations
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Quasinormal mode and frequency

Ψ(xµ) =
∞∑

n=0

∑
ℓ,m

ψsnℓ(r)
r

e−iωtYℓm(θ, ϕ) , ωsnℓ = ωR − inωI

• Re{ω} = physical oscillation frequency
• Im{ω} = damping → dissipative, "quasi"

Quasinormal mode: "ringdown"
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Quasinormal mode and frequency

Ψ(xµ) =
∞∑

n=0

∑
ℓ,m

ψsnℓ(r)
r

e−iωtYℓm(θ, ϕ) , ωsnℓ = ωR − inωI

• s: spin of perturbing field
• m: azimuthal number for spherical harmonic

decomposition in θi
• ℓ: angular/multipolar number for spherical harmonic

decomposition in θ, ϕ
• n: overtone number labels QNMs by a monotonically

increasing |Im{ω}|

Quasinormal mode: "ringdown"
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Black hole wave equation:

d2

dx2φ(x) +
[
ω2 − V(r)

]
φ(x) = 0 ,

dr
dx

= f (r)

→ just a second-order ODE?

The QNM eigenvalue problem
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Black hole wave equation:

d2

dx2φ(x) +
[
ω2 − V(r)

]
φ(x) = 0 ,

dr
dx

= f (r)

→ actually: QNM boundary conditions

purely ingoing: φ(x) ∼ e+iωx . x → −∞ (r → rH)

purely outgoing: φ(x) ∼ e−iωx . x → +∞ (r → +∞)

Waves escape domain of study at the boundaries ⇒ dissipative

The QNM eigenvalue problem
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The 7D metric

ds2
7D = gBH

µν dxµdxν + gHij dxidxj

Ψs
nℓm(t, r, θ, ϕ, y

1, y2, y3) =

∞∑
n=0

∑
ℓ,m

ψsnℓ(r)
eiωtr

Ys
mℓ(θ, ϕ)Z(y

1, y2, y3)

ds2
BH = −f (r)dt2 + f (r)−1dr2 + r2(sin2 dθ2 + dϕ2)

f (r) = 1 − 2M/r

The black hole + nilmanifold model
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The 7D metric

ds2
7D = gBH

µν dxµdxν + gHij dxidxj

Ψs
nℓm(t, r, θ, ϕ, y

1, y2, y3) =

∞∑
n=0

∑
ℓ,m

ψsnℓ(r)
eiωtr

Ys
mℓ(θ, ϕ)Z(y

1, y2, y3)

Laplacian of a product space is the sum of its parts(
∇2

BH +∇2
H

)∑
Φ(x)Zk(y) = 0 ,

∇2Zk(y) = −µ2
kZk(y)

“mogette parameter"

The black hole + nilmanifold model

16/37 A. Chrysostomou Searching for extra dimensions in gravitational waves



The 7D metric

ds2
7D = gBH

µν dxµdxν + gHij dxidxj

Ψs
nℓm(t, r, θ, ϕ, y

1, y2, y3) =

∞∑
n=0

∑
ℓ,m

ψsnℓ(r)
eiωtr

Ys
mℓ(θ, ϕ)Z(y

1, y2, y3)

Laplacian of a product space is the sum of its parts(
∇2

BH +∇2
H

)∑
Φ(x)Zk(y) = 0 ,

∇2Zk(y) = −µ2
kZk(y)

“mogette parameter"

The black hole + nilmanifold model

17/37 A. Chrysostomou Searching for extra dimensions in gravitational waves



The wavelike equation

d2ψ

dr2
∗
+
(
ω2 − V(r)

)
ψ = 0

V(r) =
(

1 − 2M
r

)(
ℓ(ℓ+ 1)

r2 +
2M
r3 + µ2

)

The black hole + nilmanifold
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The fundamental mode: n = 0, ℓ = 2
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The QNM spectrum
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The fundamental mode: n = 0, ℓ = 2

µ ω (WKB) ω (PT) ω (DO)
0.0 0.4836 − 0.0968i 0.4874 − 0.0979i 0.4836 − 0.0968i
0.1 0.4868 − 0.0957i 0.4909 − 0.0968i 0.4868 − 0.0957i
0.2 0.4963 − 0.0924i 0.5015 − 0.0936i 0.4963 − 0.0924i
0.3 0.5123 − 0.0868i 0.5192 − 0.0881i 0.5124 − 0.0868i
0.4 0.5351 − 0.0787i 0.5443 − 0.0800i 0.5352 − 0.0787i
0.5 0.5649 − 0.0676i 0.5770 − 0.0690i 0.5653 − 0.0676i
0.6 0.6022 − 0.0528i 0.6181 − 0.0541i 0.6032 − 0.0532i
0.7 0.1396 + 0.2763i 0.6695 − 0.0312i 0.6500 − 0.0343i

The QNM spectrum
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The fundamental mode: n = 0, ℓ = 2

µ ω (WKB) ω (PT) ω (DO)
0.0 0.4836 − 0.0968i 0.4874 − 0.0979i 0.4836 − 0.0968i
0.1 0.4868 − 0.0957i 0.4909 − 0.0968i 0.4868 − 0.0957i
0.2 0.4963 − 0.0924i 0.5015 − 0.0936i 0.4963 − 0.0924i
0.3 0.5123 − 0.0868i 0.5192 − 0.0881i 0.5124 − 0.0868i
0.4 0.5351 − 0.0787i 0.5443 − 0.0800i 0.5352 − 0.0787i
0.5 0.5649 − 0.0676i 0.5770 − 0.0690i 0.5653 − 0.0676i
0.6 0.6022 − 0.0528i 0.6181 − 0.0541i 0.6032 − 0.0532i
0.7 0.1396 + 0.2763i 0.6695 − 0.0312i 0.6500 − 0.0343i

⇒ An upper bound on our QNM probe (“sensitivity range cutoff")

The QNM spectrum
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Bounds from GWs?
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pyRing

Bounds from GWs?
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The fundamental mode: n = 0, ℓ = 2

µ δω δτ
0.0 0.0000 0.0000
0.1 0.0065 0.0113
0.2 0.0262 0.0473
0.3 0.0594 0.1149
0.4 0.1066 0.2302
0.5 0.1687 0.4306
0.6 0.2472 0.8206
0.7 0.3440 1.8181

The QNM spectrum − as GR deviations
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Tests of GR with GWTC-3 [2112.06861]

δωO3 = 0.02+0.07
−0.07

δτO3 = 0.13+0.21
−0.22

Most stringent QNM GR deviations
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Result

0.1747 < µ < 0.3681



From the dimensionless parameter Mµ,

Mµ =
GmBHm

ℏc

⇒ m =
1

mBH
ℏc
G

Mµ

m ∼ 10−χ10−46kg ∼ 10−(χ+10)eV/c2

m ∼ 10−13 eV/c2 for Mf ∼ 62M⊙ of GW150914
light scalar hypotheses

Interpretation?
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• Rich phenomenology awaits in the mathematicians’ playground!

• Connecting theory and observation is non-trivial (“the gap")

Detecting modifications to GR is considered to be beyond the

sensitivity of modern detectors

Using QNM theory, we have introduced a possible new

observable + applied naive constraints

Conclusions
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Using established techniques to probe the GW BSM landscape...

Some empty space

What’s next?
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Credit to S. Rao et al. / K. Oide, G. Franchetti & F. Zimmermann / P. Chen [http://gwplotter.com]



C. Caprini et al. JCAP 03 (2020) 024.

Algorithm for finding GWs from PTs
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← is there a strong first order phase transition?
ϕc

Tc
⩾ 1

Algorithm for finding GWs from PTs
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False vacuum

True vacuum

effV

G. White, A Pedagogical Intro to Baryogenesis; W.C. Huang, F. Sannino, and Z.W. Wang, Phys. Rev. D 102 (2020) 095025

To determine the first order phase transition
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Veff ≈ Vtree + V1loop + VT

False vacuum

True vacuum

effV

G. White, A Pedagogical Intro to Baryogenesis; W.C. Huang, F. Sannino, and Z.W. Wang, Phys. Rev. D 102 (2020) 095025

To determine the first order phase transition
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W.C. Huang, F. Sannino, and Z.W. Wang, Phys. Rev. D 102 (2020) 095025

Sensitivity to new signals

34/37 A. Chrysostomou Searching for extra dimensions in gravitational waves



Stay tuned!

W.C. Huang, F. Sannino, and Z.W. Wang, Phys. Rev. D 102 (2020) 095025

Sensitivity to new signals
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Fin

Thank you



Fin

Thank you

And a warm thanks to



Compactification: infinite (3 + 1) dims; finite x5
periodic BCs: x5 → x5 + 2πR

KK tower of states:

Φ(xµ, x5) =

∞∑
n=0

Φ(n) (xµ) einx5/R , mn =

√
m2

0 +
(n

R

)2

In the Kaluza-Klein 5D universe
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Veff ≈ Vtree + V1loop + VT

For β = 1/T, L5 = 2πR :

VT = − 3
4π2 ζ(5)

1
L4

5

− 3
4π2 ζ(5)

L5

β2 − Γ(5/2)
π5/2L4

5
2

∞∑
m,n=1

[(
βm
L5

)2

+ n2

]−5/2

VT ∼ − 3
4π2 ζ(5)

1
L4

5
L5 ≪ β

VT ∼ − 3
4π2 ζ(5)

1
β5 L5 ≫ β

In the Kaluza-Klein 5D universe
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In the Kaluza-Klein 5D universe

37/37 A. Chrysostomou Searching for extra dimensions in gravitational waves



Dolan & Ottewill (2009)

A new computation method for BH QNMs through a novel
ansatz based on null geodesics + expansion of the QNF in

inverse powers of L = ℓ+ 1/2

Φ(r) = eiωz(x)v(r) , ω =

∞∑
k=−1

ωkL−k

We explore the method for Schwarzschild, RN, and SdS in 4D:
• more efficient means of calculating detectable BH QNMs?
• explore interplay of θ, λ in large-ℓ limit

The DO multipolar expansion method
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Components of the ansatz

v(r) = exp

{ ∞∑
k=0

Sk(r)L−k
}
, z(x) =

∫ x

ρ(r)dx =

∫ x

bckc(r)dx

rc =
2f (r)
∂rf (r)

∣∣∣∣
r=rc

, bc =

√
r2

f (r)

∣∣∣∣∣
r=rc

, kc(r)2 =
1
b2 − f (r)

r2

The DO multipolar expansion method
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{ ∞∑
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Components of the ansatz

v(r) = exp

{ ∞∑
k=0

Sk(r)L−k
}
, z(x) =

∫ x

ρ(r)dx =

∫ x

bckc(r)dx

rc =
2f (r)
∂rf (r)

∣∣∣∣
r=rc

, bc =

√
r2

f (r)

∣∣∣∣∣
r=rc

, kc(r)2 =
1
b2 − f (r)

r2

We generalise the consequent ODE

f (r)
d
dr

(
f (r)

dv
dr

)
+ 2iωρ(r)

dv
dr

+

[
iωf (r)

dρ
dr

+ (1− ρ(r)2) ω2 − V(r)
]

v(r) = 0

We solve iteratively for ωk and S′
k(r) and sub into ωk

The DO multipolar expansion method

37/37 A. Chrysostomou Searching for extra dimensions in gravitational waves



rc = 3 , bc =
√

27 ⇒ ρ(r) =
(

1 − 3
r

)√
1 +

6
r

ω(L, µ) = +
1
3

L − i
6

L0 +

[
3µ2

2
+

7
648

]
L−1

+

[
5iµ2

4
− 137i

23328

]
L−2 +

[
9µ4

8
− 379µ2

432
+

2615
3779136

]
L−3

+

[
27iµ4

16
− 2677iµ2

5184
+

590983i
1088391168

]
L−4

+

[
63µ6

16
− 427µ4

576
+

362587µ2

1259712
− 42573661

117546246144

]
L−5

+

[
333iµ6

32
+

6563iµ4

6912
+

100404965iµ2

725594112
+

11084613257i
25389989167104

]
L−6 .

QNF expansions for the Schwarzschild BH
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The fundamental mode: n = 0, ℓ = 2

µ ω (WKB) ω (PT) ω (DO)
0.0 0.4836 − 0.0968i 0.4874 − 0.0979i 0.4836 − 0.0968i
0.1 0.4868 − 0.0957i 0.4909 − 0.0968i 0.4868 − 0.0957i
0.2 0.4963 − 0.0924i 0.5015 − 0.0936i 0.4963 − 0.0924i
0.3 0.5123 − 0.0868i 0.5192 − 0.0881i 0.5124 − 0.0868i
0.4 0.5351 − 0.0787i 0.5443 − 0.0800i 0.5352 − 0.0787i
0.5 0.5649 − 0.0676i 0.5770 − 0.0690i 0.5653 − 0.0676i
0.6 0.6022 − 0.0528i 0.6181 − 0.0541i 0.6032 − 0.0532i
0.7 0.1396 + 0.2763i 0.6695 − 0.0312i 0.6500 − 0.0343i

In agreement with massive scalar QNFs of S. Dolan, Phys. Rev. D 76 (2007) 084001

The QNM spectrum
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Suppose we place a 4D Schwarzschild black hole within a 7D
spacetime, perturbed by a 7D scalar test field of mass µ:

KG:
1

√−g
∂µ

(√
−ggµν∂νΨ

)
− µ2Ψ = 0 ,

gµνdxµdxν = gab(x)dxadxb + gij(y)dxidxj ,

gµν =



−f (r) 0 0 0 0 0 0
0 f (r)−1 0 0 0 0 0
0 0 +1 0 0 0 0
0 0 0 +1 0 0 0
0 0 0 0 r2

1 0 0
0 0 0 0 0 r2

2 + r2
3N2y2

1 r2
3Ny1

0 0 0 0 0 r2
3Ny1 r2

3


,

where f (r) = 1− 2M/r

QNMs: Deriving the radial equation
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Variable-separable QNM solution:

Ψs
nℓmµ(t, r, θ, ϕ, y1, y2, y3) =

∞∑
n=0

∞∑
ℓ=0

ℓ∑
m=−ℓ

Rs
nℓµ(r)Y

s
mℓ(θ, ϕ)Zµ(y1, y2, y3)eiωt .

Laplacian of a product space is the sum of its parts(
∇2

BH +∇2
nil
)∑

Φ(x)Zk(y) = 0 ,

• ∇2Ys
mℓ(θ, ϕ) =

−ℓ(ℓ+1)
r2 Ys

mℓ(θ, ϕ)

• ∇2Zk(y) = −µ2
kZk(y)

µ2
k,j,m =

4π2k2

(r3)2

[
1 +

(2m + 1)r3

2π|k|
|f|
]

QNMs: Deriving the radial equation
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RED = (d − 3)Kγij

Gravitational perturbations
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