Journées de Recontres Jeunes Chercheurs 2022 Microscopic ab initio approach for the antiproton-nucleus annihilation

Pierre-Yves Duerinck

Physique nucléaire et physique quantique, Université libre de Bruxelles (ULB), Brussels Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg

October 28, 2022

Outline

1 [Nuclear physics with antiprotons](#page-2-0)

2 [Research project](#page-13-0)

\bullet The $p\bar{p}$ [annihilation](#page-19-0)

Schrödinger equation $N\bar{N}$ [interaction](#page-25-0) S[-matrix fit](#page-30-0)

Φ The $d\bar{p}$ [annihilation](#page-33-0)

[Faddeev equations](#page-34-0) [Optical model](#page-35-0) [Coupled-channel model](#page-37-0)

Outline

1 [Nuclear physics with antiprotons](#page-2-0)

- ² [Research project](#page-13-0)
- \bigcirc The $p\bar{p}$ [annihilation](#page-19-0)
- **4** The $d\bar{p}$ [annihilation](#page-33-0)
- **6** [Conclusion and prospects](#page-38-0)

Nuclear physics with antiprotons

- The first experiment with antiprotons to study neutron skins and halos was performed in Brookhaven National Laboratory in the 1970s.
- The interest for the physics of the interactions between matter and antimatter has been revived with the development of new facilities at CERN: LEAR (1982-1996), AD , ELENA (2016).
- Low-energy antiprotons are expected to provide a unique sensitivity to the nuclear density tail.

Figure: LEAR (Low Energy Antiproton Ring). Credits: CERN

Figure: ELENA (Extra-Low Energy Antiproton Ring). Credits: CERN

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- ² Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **8** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- ² Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **8** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- ² Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **8** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- **2** Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **3** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- ² Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **8** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- ² Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **8** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

- The evolution of the antiproton-nucleus system takes place in three main steps $¹$ </sup>
	- **1** Capture on a highly excited Coulomb orbital $(n \gg 1)$ and formation of a quasi-bound system.
	- ² Decay of the antiprotonic atom via X-ray and Auger emissions.
	- **8** Annihilation with a nucleon of the nucleus followed by the emission of mesons.

- The annihilation process involves a very complex dynamics and contains multitude of meson-producing channels, namely $N\bar{N} \to \pi\bar{\pi}, K\bar{K}, \rho\bar{\rho}, \pi\bar{\pi}\pi\bar{\pi}$.
- The measurement of annihilation products allows us to infer the neutron to proton annihilation ratio \rightarrow since the annihilation is expected to happen in the nuclear periphery, it could be an interesting tool to investigate the nature of the nuclear tail density.

Pierre-Yves Duerinck (ULB, IPHC) 21 and 21 and

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

The PUMA experiment

- \bullet PUMA¹: antiProton Unstable Matter Annihilation.
- Aims to study nucleus skin densities of short lived nuclear isotopes, produced by ISOLDE, using low energy antiprotons transported from ELENA.

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

The PUMA experiment

- \bullet PUMA¹: antiProton Unstable Matter Annihilation.
- Aims to study nucleus skin densities of short lived nuclear isotopes, produced by ISOLDE, using low energy antiprotons transported from ELENA.
- The first objectives of the PUMA experiment are
	- **1** to study the density tail of radioactive nuclei, namely the n-to-p annihilation ratio.
	- ² to characterise the density tail of known neutron halos and neutron skins.
	- ³ to evidence new proton and neutron halos.

Figure: Schematic view of the PUMA experiment $¹$ </sup>

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88

Outline

1 [Nuclear physics with antiprotons](#page-2-0)

- \bigcirc The $p\bar{p}$ [annihilation](#page-19-0)
- Φ The $d\bar{p}$ [annihilation](#page-33-0)
- **6** [Conclusion and prospects](#page-38-0)

- Key question: how can the measured antiproton-nucleon annihilations be related with the nuclear surface densities ?
- PhD goal: answering to this question by developing a microscopic ab initio approach to study the simplest cases of antiproton-nucleus $(\bar{p} - A)$ system.

- Key question: how can the measured antiproton-nucleon annihilations be related with the nuclear surface densities ?
- PhD goal: answering to this question by developing a microscopic ab initio approach to study the simplest cases of antiproton-nucleus ($\bar{p} - A$) system.
- Main steps:
	- **1** Study of the $N\bar{N}$ system with different annihilation models.

- Key question: how can the measured antiproton-nucleon annihilations be related with the nuclear surface densities ?
- PhD goal: answering to this question by developing a microscopic ab initio approach to study the simplest cases of antiproton-nucleus $(\bar{p} - A)$ system.
- Main steps:
	- **1** Study of the $N\bar{N}$ system with different annihilation models.
	- Study of the low-energy \bar{p} − A scattering for nuclei up to $A = 2, 3$.

- Key question: how can the measured antiproton-nucleon annihilations be related with the nuclear surface densities ?
- PhD goal: answering to this question by developing a microscopic ab initio approach to study the simplest cases of antiproton-nucleus ($\bar{p} - A$) system.
- Main steps:
	- **1** Study of the $N\bar{N}$ system with different annihilation models.
	- Study of the low-energy \bar{p} − A scattering for nuclei up to $A = 2, 3$.
	- ³ Evaluation of the theoretical uncertainties and the sensitivity of the results with the models.

- Key question: how can the measured antiproton-nucleon annihilations be related with the nuclear surface densities ?
- PhD goal: answering to this question by developing a microscopic ab initio approach to study the simplest cases of antiproton-nucleus ($\bar{p} - A$) system.
- Main steps:
	- **1** Study of the $N\bar{N}$ system with different annihilation models.
	- 2 Study of the low-energy $\bar{p} A$ scattering for nuclei up to $A = 2, 3$.
	- ³ Evaluation of the theoretical uncertainties and the sensitivity of the results with the models.
- Progress of the work
	- \bigcirc Study of the $p\bar{p}$ system.
	- 2 Study of the $d\bar{p}$ annihilation (in progress).

Outline

1 [Nuclear physics with antiprotons](#page-2-0)

2 [Research project](#page-13-0)

3 The $p\bar{p}$ [annihilation](#page-19-0) Schrödinger equation $N\bar{N}$ [interaction](#page-25-0) S[-matrix fit](#page-30-0)

4 The $d\bar{p}$ [annihilation](#page-33-0)

• The $p\bar{p}$ annihilation involves many meson-producing channels, mainly pions:

$$
p\bar{p} \longrightarrow p\bar{p} \n\longrightarrow n\bar{n} \n\longrightarrow \pi^0 \pi^0 \n\longrightarrow \pi^+ \pi^- \n\longrightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0 \n\vdots
$$

• The $p\bar{p}$ annihilation involves many meson-producing channels, mainly pions:

$$
p\bar{p} \longrightarrow p\bar{p} \n\longrightarrow n\bar{n} \n\longrightarrow \pi^0 \pi^0 \n\longrightarrow \pi^+ \pi^- \n\longrightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0 \n\vdots
$$

• For a state $J = l \oplus S$, the channel radial wavefunctions are solution of the coupled-channel Schrödinger equations

$$
\sum_{c'} \left[(T_{l_c} + E_c - E) \, \delta_{cc'} + V_{cc'} \right] u_{c'}(r) = 0.
$$

• The $p\bar{p}$ annihilation involves many meson-producing channels, mainly pions:

$$
p\bar{p} \longrightarrow p\bar{p} \n\longrightarrow n\bar{n} \n\longrightarrow \pi^0 \pi^0 \n\longrightarrow \pi^+ \pi^- \n\longrightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0 \n\vdots
$$

• For a state $J = l \oplus S$, the channel radial wavefunctions are solution of the coupled-channel Schrödinger equations

$$
\sum_{c'} \left[(T_{l_c} + E_c - E) \, \delta_{cc'} + V_{cc'} \right] u_{c'}(r) = 0.
$$

• $N\bar{N}$ interaction: should include repulsive/attractive features and account for the annihilation into meson channels.

• The $p\bar{p}$ annihilation involves many meson-producing channels, mainly pions:

$$
p\bar{p} \longrightarrow p\bar{p} \n\longrightarrow n\bar{n} \n\longrightarrow \pi^0 \pi^0 \n\longrightarrow \pi^+ \pi^- \n\longrightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0 \n\vdots
$$

• For a state $J = l \oplus S$, the channel radial wavefunctions are solution of the coupled-channel Schrödinger equations

$$
\sum_{c'} \left[(T_{l_c} + E_c - E) \, \delta_{cc'} + V_{cc'} \right] u_{c'}(r) = 0.
$$

• $N\bar{N}$ interaction: should include repulsive/attractive features and account for the annihilation into meson channels.

• The $p\bar{p}$ annihilation involves many meson-producing channels, mainly pions:

$$
p\bar{p} \longrightarrow p\bar{p} \n\longrightarrow n\bar{n} \n\longrightarrow \pi^0 \pi^0 \n\longrightarrow \pi^+ \pi^- \n\longrightarrow \pi^+ \pi^- \pi^0 \pi^0 \pi^0
$$
\n
$$
\vdots
$$
\n
$$
\longrightarrow
$$
 effective models

• For a state $J = l \oplus S$, the channel radial wavefunctions are solution of the coupled-channel Schrödinger equations

$$
\sum_{c'} \left[(T_{l_c} + E_c - E) \, \delta_{cc'} + V_{cc'} \right] u_{c'}(r) = 0.
$$

• $N\bar{N}$ interaction: should include repulsive/attractive features and account for the annihilation into meson channels.

Optical model

- The annihilation is usually accounted using an optical potential: $V_{N\bar{N}} = U_{N\bar{N}} + iW$.
- The imaginary part induces a loss of probability current in the initial channel which simulates the effect of all annihilation channels.
- $\bullet\,$ Present work: Kohno-Weise potential 1 $(W\equiv$ Wood-Saxon well).

 1 M. Kohno and W. Weise. Nuclear physics A 454 (1986) 429

Optical model

- The annihilation is usually accounted using an optical potential: $V_{N\bar{N}} = U_{N\bar{N}} + iW$.
- The imaginary part induces a loss of probability current in the initial channel which simulates the effect of all annihilation channels.
- $\bullet\,$ Present work: Kohno-Weise potential 1 $(W\equiv$ Wood-Saxon well).
- The $p\bar{p}$ problem is reduced to

 1 M. Kohno and W. Weise. Nuclear physics A 454 (1986) 429

• Alternative method explored: the annihilation is simulated by the addition of effective $m\bar{m}$ channels coupled to $p\bar{p}$ and $n\bar{n}$ channels by short-range Yukawa potentials 1 .

 1 E. Ydrefors and J. Carbonell. The European physical journal A 57 (2021) 303

- Alternative method explored: the annihilation is simulated by the addition of effective $m\bar{m}$ channels coupled to $p\bar{p}$ and $n\bar{n}$ channels by short-range Yukawa potentials 1 .
- The $p\bar{p}$ problem is reduced to

 1 E. Ydrefors and J. Carbonell. The European physical journal A 57 (2021) 303

- Alternative method explored: the annihilation is simulated by the addition of effective $m\bar{m}$ channels coupled to $p\bar{p}$ and $n\bar{n}$ channels by short-range Yukawa potentials 1 .
- The $p\bar{p}$ problem is reduced to

- Still phenomenological but includes very different dynamics.
- The parameters of the couped-channel potential are adjusted to fit the S -matrix obtained with the optical model.

µ

 1 E. Ydrefors and J. Carbonell. The European physical journal A 57 (2021) 303

S-matrix fit: ${}^{1}S_{0}$

Figure: S-matrix for the ${}^{1}S_0$ wave computed with the optical model (dotted line) and the coupled-channel model (full line).

S-matrix fit: ${}^{1}P_1$

Figure: S -matrix for the ${}^{1}P_1$ wave computed with the optical model (dotted line) and the coupled-channel model (full line).

S-matrix fit: ${}^{3}P_1$

Figure: S -matrix for the ${}^{3}P_1$ wave computed with the optical model (dotted line) and the coupled-channel model (full line).

Outline

1 [Nuclear physics with antiprotons](#page-2-0)

2 [Research project](#page-13-0)

 \bullet The $p\bar{p}$ [annihilation](#page-19-0)

4 The $d\bar{p}$ [annihilation](#page-33-0)

[Faddeev equations](#page-34-0) [Optical model](#page-35-0) [Coupled-channel model](#page-37-0)

The Faddeev equations

- The 3-body Schrödinger equation reads $(E H_0 V_{23} V_{13} V_{12})\Psi = 0.$
- Faddeev decomposition: $\Psi = \Phi_1(x_1, y_1) + \Phi_2(x_2, y_2) + \Phi_3(x_3, y_3)$.
- $\bullet\,$ The Faddeev components Φ_i are solutions of the Faddeev equations $^1\colon$

$$
(E - H_0 - V_{23}) \Phi_1(\boldsymbol{x}_1, \boldsymbol{y}_1) = V_{23} [\Phi_2(\boldsymbol{x}_2, \boldsymbol{y}_2) + \Phi_3(\boldsymbol{x}_3, \boldsymbol{y}_3)]
$$

\n
$$
(E - H_0 - V_{13}) \Phi_2(\boldsymbol{x}_2, \boldsymbol{y}_2) = V_{13} [\Phi_3(\boldsymbol{x}_3, \boldsymbol{y}_3) + \Phi_1(\boldsymbol{x}_1, \boldsymbol{y}_1)]
$$

\n
$$
(E - H_0 - V_{12}) \Phi_3(\boldsymbol{x}_3, \boldsymbol{y}_3) = V_{12} [\Phi_1(\boldsymbol{x}_1, \boldsymbol{y}_1) + \Phi_2(\boldsymbol{x}_2, \boldsymbol{y}_2)]
$$

Figure: Jacobi coordinates for a three-body system

 1 L. D. Faddeev. Journal of Experimental and Theoretical Physics 39 (1960) 1459

Optical model

• In the optical model, the Faddeev components include the $p\bar{p}$ and $n\bar{n}$ channels coupled together by the $N\bar{N}$ interaction.

Figure: Faddeev components for the $d\bar{p}$ annihilation (optical model).

Optical model

- From the wavefunction, we can extract scattering phase shift and annihilation densities¹ \longrightarrow related to the annihilation probability
- The P -wave annihilation density scales nicely with the deuteron density \rightarrow confirming the intuitive conjecture on which the PUMA project is based.
- Model dependence ?

Figure: $d\bar{p}$ annihilation densities for the ${}^2S_{1/2}$ (left panel) and ${}^4P_{5/2}$ (right panel) states¹

 $1R$. Lazauskas and J. Carbonell. Physics letters B 820 (2021) 136573

• In the coupled channel model, the Faddeev components include the $p\bar{p}$, $n\bar{n}$ and $m\bar{m}$ channels.

Figure: Faddeev components for the $d\bar{p}$ annihilation (coupled-channel model).

Outline

- **1** [Nuclear physics with antiprotons](#page-2-0)
- ² [Research project](#page-13-0)
- **3** The $p\bar{p}$ [annihilation](#page-19-0)
- Φ The $d\bar{p}$ [annihilation](#page-33-0)
- **6** [Conclusion and prospects](#page-38-0)

• Low-energy antiprotons could be an interesting probe to study the nuclear density tails.

- Low-energy antiprotons could be an interesting probe to study the nuclear density tails.
- Thesis goal: study of the low-energy scattering properties of antiproton-nucleus systems with different models for the $N\bar{N}$ annihilation.

- Low-energy antiprotons could be an interesting probe to study the nuclear density tails.
- Thesis goal: study of the low-energy scattering properties of antiproton-nucleus systems with different models for the $N\bar{N}$ annihilation.
- Two-body: construction of a phase-equivalent coupled-channel potential for the $p\bar{p}$ collision.

- Low-energy antiprotons could be an interesting probe to study the nuclear density tails.
- Thesis goal: study of the low-energy scattering properties of antiproton-nucleus systems with different models for the $N\bar{N}$ annihilation.
- Two-body: construction of a phase-equivalent coupled-channel potential for the $p\bar{p}$ collision.
- Short-term prospects (this year):
	- 1 2B: study of the $n\bar{p}$ collision.

- Low-energy antiprotons could be an interesting probe to study the nuclear density tails.
- Thesis goal: study of the low-energy scattering properties of antiproton-nucleus systems with different models for the $N\bar{N}$ annihilation.
- Two-body: construction of a phase-equivalent coupled-channel potential for the $p\bar{p}$ collision.
- Short-term prospects (this year):
	- 1 2B: study of the $n\bar{p}$ collision.
	- 2 3B: Resolution of the Faddeev equations for the $d\bar{p}$ collision with the optical model.
	- 3B: Resolution of the Faddeev equations for the $d\bar{p}$ collision with the coupled-channel model $→$ complex scaling method to handle the three-body breakup in meson channels.

- Low-energy antiprotons could be an interesting probe to study the nuclear density tails.
- Thesis goal: study of the low-energy scattering properties of antiproton-nucleus systems with different models for the $N\bar{N}$ annihilation.
- Two-body: construction of a phase-equivalent coupled-channel potential for the $p\bar{p}$ collision.
- Short-term prospects (this year):
	- 1 2B: study of the $n\bar{p}$ collision.
	- 2 3B: Resolution of the Faddeev equations for the $d\bar{p}$ collision with the optical model.
	- **3** 3B: Resolution of the Faddeev equations for the $d\bar{p}$ collision with the coupled-channel model $→$ complex scaling method to handle the three-body breakup in meson channels.
- Long-term prospects: Resolution of the Faddeev-Yakubovsky equations for the systems ${}^{3}H + \bar{p}$ and ${}^{3}He + \bar{p}$.

Backup - Partial wave expansion

Resolution with a partial wave expansion:

$$
\Phi_i(\boldsymbol{x}_i,\boldsymbol{y}_i)=\sum_{n=l_x,l_y,L,s_x,S,t_x,T}\frac{\phi_n^{(i)}(x_i,y_i)}{x_iy_i}\bigg\{\left[l_xl_y\right]_L\,\left[(s_js_k)_{s_x}s_i\right]_S\bigg\}_{J}\left|(t_jt_k)_{t_x}t_i\right>_T.
$$

• The radial functions are expressed as a linear combination of Lagrange functions:

$$
\phi_n^{(i)}(x_i,y_i) = \sum_{\alpha,\beta} c_{n\alpha\beta}^{(i)} \hat{f}_{\alpha}\left(\frac{x_i}{h_x^{(i)}}\right) \hat{f}_{\beta}\left(\frac{y_i}{h_y^{(i)}}\right)
$$

- Lagrange function: polynomial multiplied by an exponential function, behaving as r^{l+1} close to the origin.
- Resolution of a generalised eigenvalue problem for bound states.
- Resolution of linear systems for scattering states.
- Matrices of large dimension \rightarrow iterative methods (Power method, Lanczos, GMRES, BICGSTAB,...).

Backup - Faddeev equations: practically

Faddeev equation for component i :

$$
\underbrace{(E-H_0-V_i)\Phi_i(\boldsymbol{x}_i,\boldsymbol{y}_i)}_{\text{Same component }\rightarrow \text{ symmetric matrix, } \text{x and } \text{y decoupled}} = \underbrace{V_i[\Phi_j(\boldsymbol{x}_j,\boldsymbol{y}_j)+\Phi_k(\boldsymbol{x}_k,\boldsymbol{y}_k)]}_{\text{Different components }\rightarrow \text{ non-symmetric matrix}}
$$

• Once projected over angular and radial functions, the right-hand side includes 6-dimensional integrals of type

$$
I = \int \frac{x_i y_i}{x_j y_j} \hat{f}_{\beta}(x_i, y_i) \hat{f}_{\alpha}(x_j, y_j) \left[Y_{l_{x_i}}(\hat{x}_i) \otimes Y_{l_{y_i}}(\hat{y}_i) \right]_L^* \left[Y_{l_{x_j}}(\hat{x}_j) \otimes Y_{l_{y_j}}(\hat{y}_j) \right]_L d\Omega_i d x_i dy_i.
$$

• Reduces to a 3-dimensional integral by analytic integration over some angles:

$$
I = \iint dx_i dy_i \int_{-1}^1 h^{(L)}(x_i, y_i, u) \frac{x_i y_i}{x_j y_j} \hat{f}_{\beta}(x_i, y_i) \hat{f}_{\alpha}(x_j, y_j) du,
$$

- \bullet I is then computed numerically with Gauss quadratures.
- Using Lagrange conditions \rightarrow only one sum: Gauss-Legendre quadrature over u with $N_u \sim 15 - 20$.

.

Backup - The Faddeev-Merkuriev equations

- Additional corrections are required to impose boundary conditions for scattering including the Coulomb potential: $V_i = V_{s_i} + V_{C_i}$.
- \bullet Separation of the potential into a short-range and a long-range contribution¹:

$$
V_i^{(s)}(x_i, y_i) = V_{s_i}(x_i) + V_{C_i} \chi(x_i, y_i)
$$

\n
$$
V_i^{(l)}(x_i, y_i) = V_{C_i}(x_i) [1 - \chi(x_i, y_i)]
$$

\n
$$
\chi(x_i, y_i) = \frac{2}{1 + \exp\left[\frac{(\chi/\chi_0)^{\mu}}{1 + \chi/\chi_0}\right]}
$$

Faddeev-Merkuriev equation for component i :

$$
(E - H_0 - V_i^{(s)} - V_i^{(l)} - V_j^{(l)} - V_k^{(l)}) \Phi_i(\mathbf{x}_i, \mathbf{y_i}) = V_i^{(s)} [\Phi_j(\mathbf{x}_j, \mathbf{y}_j) + \Phi_k(\mathbf{x}_k, \mathbf{y}_k)].
$$

¹S.P. Merkuriev. Annals of physics 130 (1980) 395

Backup - Antiprotonic atom decay

 \bullet A more formal view of the antiprotonic atom decay 1 .

Figure: Scheme of the antiprotonic atom decay¹

 1 T. Aumann, et al. The European physical journal A 58 (2022) 88