Calibration of a direct Search for dark
matter detector' the TPC of DarkSIde 20k
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Dark matter ?

Many hints at different scales

Galaxies Collision of galaxy clusters Cosmology
- T T T 71 T 1 T ™ 1 ! T . .'. R Pl ' o . . " . - = ia R e
150 |- Bullet .cll.JSt.er." g
: : N
Halo i a
{, Disk .
' N T Gas ]
(} 1 1 1 1 l 1 1 | 1 l 1 1 | | 1
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Radius, kpc
Measured rotation curves of Collision of galaxy clusters CMB (here measured by Planck) - anisotropies explanation includes a
Jlaxies fit the expectations measured only thanks to photons dark matter component
gnl £ e includepa DM vs measured by gravitational
Y lensing

component in the galax . .
P Jataxy -> different repartition of mass +

DM is collision-less
= Missing mass In the Universe

Standard model does not provide particle candidate
for dark matter
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Properties of dark matter Dark matter candidates
107% eV
, Axion (driven by CP non-violation in the strong
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Do not (directly) interact with » Sterile neutrino (something to do with neutrino
ohotons oscillations) 1 00key
mp+,n+
—t+— 10 GeV
| WIMP (Weakly Interactive Massive Particle) .
Long lived (or at least one of them) (introduced by cosmology and SUSY’s lightest I
neutralino fits requirements) '
Cold (non relativistic) * Primordial Black Holes (cosmology driven) Mg ! ey
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Acceptable masses
range for DM
Mass of known particles/

objects
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How to search for WIMPs ?

Create huge
detectors

In order not to miss an event
being over crowded by
background events. Dark matter
direct searches are located deep

underground

As the WIMPs are expected to have a very
small interaction probability with ordinary
matter, experiments should build very large (or
dense) experiments in order to increase the
detection probability

Searching

for WIMPs Discriminate

background and signal
K“°‘f" t.he detection Understand the
limits of the .. Use detectors that are able to
experiment ralnlngbackgoud discriminate backgrounds and
In case on non detection, one cannot i ogg’:ir\]/?til ;?rt?] 2 Z;Jtr: “tor signal. E.g. : as we expect WIMPs to
claim the non existence of dark matter, be heavy, they are supposed to
just its non existence in a certain interact with the nucleus of the
phase space material of the detector while most
background interact with cloud
electrons

The most dangerous background
comes from heavy particles
(neutrons)

The exclusion limits of an experiment
are computed using a simple model of
the Milky Way dark matter’s halo
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Expected signals in the TPC

Neutrons

- e Electronic recoill

Electrons,

photons - Comes from electrons and

photons (residual background)

* Slow S1 / high yield of S2

, 82
[

9

\

XX
A = A
e

|- Scintillation, - -
_~J 128 nm photons, S1-

SR O K [ LAr => very good separation
S PR (P between both
L |
NR event
Nuclear recoil

WIMP

__ i_’;lohiga't.ibp:," e

X

Comes from neutrons (residual
background) and WIMPs (signal)

o | Fast S1/ few S2




The TPC calibration
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The TP

* Dec. 2021: -> final simulations of the calibration

calibration set up design inside g4ds

deg_rcies rdep rea (onp re v 700 AR Sop ¢ « SH 1AL cep 3. 50 LA dep 2 50 A0 T AT arvdep_o8ep g0« TV PR - G5 A8 TAmhCATaa dep_a'cep_y) « Thix PS4+ 3 5|
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o B Geometry of the
daa s * detector as it is
i IVORERN ";0 M e B0 jmplemented in
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based software
applied for the
DarkSide20k
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Stakes coming with the calibration
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Simulation work

Prepare at best the calibration thanks to simulations

 What needs to be calibrated ?

ER signal: mainly background Both need to
be carefully
» NR signal: can be residual background calibrated
(from neutrons) or actual WIMP signal ) Scatters

* Simulations made thanks to a GEANT4-based software applied to DS20k geometry:
g4ds

 Geometry of the detector implemented inside -> it simulates the interaction between
calibration particles and the detector

Estimation of the rates of events in the TPC following photons and neutrons
exposure
12



Simulation of the response to photon sources
exposure ()

ER : expected to be mainly (photons, electrons)
* g4ds : Use of of photons: 57Co, 133Ba, 22Na, 13/Cs, 60Co

Most important signal to reconstruct for the calibration:

Ba 1 5 5 33Ba simulation in the DS20k TPC

1o mm= All events 356 kev

mm= Single scatters

WIMPs’ signature

Nevents / 4 keV

All events Pure ER SS 10°

From these ;. computation
of the

inside the TPC per decay of the 10E rf'l‘
source located in the tubes N T T TR T I,

|
0 50 100 150 200 250 300 350 400
E, deposited energy in the TPC [keV]

13



Simulation of the response to photon sources exposure

>’Co sir « TPC 133Bg )0k TPC

3 T 3wl 356 keV
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“Css )k TPC
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the 2 L
n [ ] 102
inside the TPC per decay of the
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Rates & evts/ T I ...

0 100 200 300 400 500 600 700 800
E, deposited energy in the TPC [keV]

decay

Asking for
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of ER calibration
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Differential rate [events/ne
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Simulation of the response to neutron sources

exposure (NR)

NR : can be background (neutrons) or signal (WIMPs)

NR calibration = really at stake

g4ds : use of three radioactive sources of neutrons: AmBe, AmC, DD gun (monochromatic source of 2.45

MeV neutrons)

Most important signal to calibrate =

AmBe in the DS-20k TPC

[0.2, 12] MeV

10°

—
<
N

20 40 60 80 100 120 140 160 180 200
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to ~ 1 month of NR calibration

Pure NR SS

All events




Impact of the tubes on the detector

The preparation of the TPC calibration was the main goal of the simulation work. Yet, as the presence of the pipes
can have a negative impact on the rest of the detector, simulations were performed in order to check how much
Impact the tubes have

by the argon when scintillating: this
could lower the veto LCE - DS20k background budget = 0.1 events/10years

 Simulations were performed in
order to
SO as to

of LCE

Best solution =

A  Represents less than 0.01% 0 ' T Wi
. . of the budget : fully
compared with the case without .
negligible

pipes
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Ongoing tests at CPPM: the mock up of the
calibration system

* @Goal = check the feasibility of the calibration system: if sources
don’t get stuck in the pipes, test the motors system etc

* Mock up = one U-shaped tube inserted inside a tank

Sept. 2022: the tank is thermally insulated and the mock up is
complete -> tests at cold (LN2, -196°C)

* Tests: the motors systems drive a fake source inside the U-
shaped tube while being at cold in order to mimic the
experimental conditions of DarkSide-20k

Mockup U-tube

Measure: tension of the rope, position of the source +
monitoring of the whole system

* The tension increased after decreasing the temperature
without blocking the source

17
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Conclusions

The calibration is possible even considering the constraints of the detector

* ER calibration : 1 week / NR calibration : 1 month

The calibration system do not induce too much background in the detector nor impacts
consequently the efficiency of the veto buffer (in which the tubes are dived)

» Current tests : mock up of the calibration system, at cold

18



Perspectives

Create huge
detectors

In order not to miss an event
being over crowded by
background events. Dark matter
direct searches are located deep

underground

As the WIMPs are expected to have a very
small interaction probability with ordinary
matter, experiments should build very large (or
dense) experiments in order to increase the
detection probability

Searching
for WIMPs

Know the detection

Discriminate

/ background and signal

limits of the Use detectors that are able to

experiment
In case on non detection, one cannot

discriminate backgrounds and
signal. E.g. : as we expect WIMPs to

claim the non existence of dark matter, Understand the be heavy, they are supposed to
just its non existence in a certain remaining background interact with the nucleus of the

phase space It comes from natural

radioactivity of the detector

The exclusion limits of an experiment
are computed using a simple model of
the Milky Way dark matter’s halo

The most dangerous background
comes from heavy particles
(neutrons)

material of the detector while most
background interact with cloud

electrons

19
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e Electronic recoll

« Comes from electrons
and photons (residual
background)

* Slow S1 / high yield of S2

LAr => very good separation
between both

NR signal
Nuclear recoill

Comes from neutrons
(residual background) and
WIMPs (signal)

Fast S1 / few S2

Signals in a double phase TPC

S1 Pulse Shape Discrimination (Rgz>10%)*

— NR (mainly fast scint.)

LAr

— ER (mainly slow scint.)

foo = S1(90ns) / S1tot

. Fast scint. (6 ns)
-~ Slow scint. (1600 ns)

A d o i Al A VT D S ..t Ao d o A

0 1 2 3 B 5 6 7
Time [us)

* PSD measurement by DEAP-3600 in PRD 100 (2019) 022004
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