

#### Sarah Herrmann On behalf of the ALICE collaboration



IP2I Lyon

#### Journées de Rencontre des Jeunes Chercheurs Saint-Jean de Monts

# **CHARGED-PARTICLE PSEUDORAPIDITY DENSITY IN PROTON-PROTON COLLISIONS IN RUN 3**

#### 25/10/2022

sarah.herrmann@cern.ch









#### **STANDARD MODEL OF PARTICLES**

#### **Standard Model of Elementary Particles**



#### interactions / force carriers (elementary bosons) ≃124.97 GeV/c<sup>2</sup> 0 Н g gluon higgs **SNO** BOSON γ **GAUGE BOS** VECTOR BOSONS photon ALAR ≃91.19 GeV/c<sup>2</sup> Ζ S Z<sup>o</sup> boson ≈80.39 GeV/c<sup>2</sup> ≃80.39 GeV/c² W⁺ boson W⁻ boson

- Primary particle : Particle with a mean
  proper lifetime  $\tau > 1 \text{ cm/c}$ 
  - produced directly in the interaction
  - from decays of particles with τ smaller than 1 cm/c excluding particles produced in interactions with material





# **VARIABLES AND SYSTEM COORDINATE DEFINITION**



Fig1. Definition of the ALICE coordinate system axis, angles and detector sides.



#### One *z*<sub>vtx</sub> found = 1 collision

Pseudorapidity  $\eta$  $\eta = -\ln | \tan |$ 2J





### PHYSICS MOTIVATIONS: CHARGED-PARTICLE PSEUDORAPIDITY DENSITY

- Helps in understanding particle production mechanisms in high-energy hadronic collisions, from proton-proton to heavy-ion systems
  - OCD in the non-perturbative regime
  - Provides constraints on phenomenological models and event generators
- At forward rapidity → allows one to access the phenomena associated with particle production in the fragmentation region
  - Limiting fragmentation hypothesis





# THE ALICE DETECTOR IN RUN 3

- ALICE in Run 3 : New sub-detectors and better performances
  - The Muon Forward Tracker (MFT) : a new sub-detector of ALICE
  - The Inner Tracking System (ITS2): upgraded central barrel detector





# THE INNER TRACKING SYSTEM UPGRADED (ITS 2)

#### ► ITS 2 goals :

- Reconstruct the primary and secondary vertices  $\rightarrow$  resolution : less than 25  $\mu m$
- Frack and identify charged particles at midrapidity with a low  $p_T$  cutoff (< 50 MeV)



- Seven cylindrical detector layers (from R = 22 mm to R = 400 mm) with ALPIDE chips
  - CMOS\* silicon pixel sensor
  - Space resolution:  $5 \mu m$
- η coverage [-1.2 ; 1.2]

\* CMOS : Complementary Metal-Oxide-Semiconductor





# THE MUON FORWARD TRACKER (MFT)

- Installed in the ALICE cavern in 2020, new detector, a vertex tracker for the Muon Spectrometer
- 5 detection disks, 2 detection planes each
- Covered with ALPIDE chips (936)
  - **Space resolution:** 5 μm
- Fine resolution:  $4 15 \ \mu s$
- Inner radius limited by the beam pipe
  - Nominal acceptance: -3.6 <  $\eta$  < -2.5, full azimuth



Poor p<sub>T</sub> resolution
 because of low
 magnetic torque in the
 forward region





# HOW TO DERIVE THE CHARGED-PARTICLE PSEUDORAPIDITY DENSITY

- - charged particles per collision and unit of pseudorapidity

- Two observables to get the result:
  - Measured number of tracks in a  $(z_{vtx}, \eta)$  bin
  - Measured number of events (collisions) in a (N<sub>trk</sub>, z<sub>vtx</sub>) bin

• Charged-particle pseudorapidity density:  $\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta}$  number of primary



# **CORRECTIONS NEEDED**

Charged-particle pseudorapidity density: number of primary charged particles per collision and unit of pseudorapidity

- 2 types of corrections computed with MC
  - Track-to-particle correction (difference between the number of reconstructed tracks and the number of primary charged particles)
  - Trigger bias correction (corrects the difference between triggered sample and generated one)





#### **MFT PERFORMANCE**

October 2021, at an interaction rate of 2 kHz



(x,y) position of MFT clusters in the farthest disk from the interaction point Very few and small dead zones

# • Pilot beam : short proton-proton run at centre-of-mass energy of $\sqrt{s}$ = 900 GeV,



•  $\eta$  and  $\phi$  distribution of tracks as expected : full azimuth and  $-3.6 < \eta < -2.5$ 



### **MFT PERFORMANCE**



- Before correcting the measured number of tracks with the track-to-particle correction: consistency checks
  - Good agreement between reconstructed MC and data ?

#### • Measured number of tracks versus ( $z_{vtx}$ , $\eta$ )

- $\rightarrow$  MC simulation can be used for correction
- → Systematic error would need to be reduced

#### MC = Monte Carlo





- Comparison of number of tracks
  - versus  $\eta$
  - in simulation and data

Data and simulation are consistent within  $\pm 5\%$ 



# **TRACK-TO-PARTICLE CORRECTION**



• Very high MFT Acc x Eff versus ( $z_{vtx}$ ,  $\eta$ ) in simulations

In the central  $z_{vtx}$ ,  $\eta$  region, AxE > 90%



-3.5

-3





# **PERFORMANCE PLOTS FOR THE CENTRAL TRACKS**



- Measured number of tracks versus  $(z_{vtx}, \eta)$

Very high Acc x Eff in the central region: good detector performance





#### ITS+TPC Acc x Eff: profile used for track-to-particle correction





# **RESULTS AT MIDRAPIDITY**

- $\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta}$  results at midrapidity for the INEL event class (all Inelastic collisions)
- Results compatible with previously published ones on Run2 data
  - Small shift due to the lack of diffraction correction in Run3 MC simulations
- The full measurement including the MFT points is expected in the coming months

#### Study made by Anton



#### **Expected MFT results**

| 1     | 4   |  |
|-------|-----|--|
|       |     |  |
| All   | kin |  |
|       |     |  |
|       |     |  |
| •     |     |  |
|       |     |  |
| ····· |     |  |
|       | η   |  |

#### **ADDITIONAL CORRECTION : DIFFRACTION TUNING**

- Diffraction tuning:
  - MC simulations (PYTHIA) fail to reproduce the number of diffractive events, need a tuned MC for correction
- Single Diffractive and Double Diffractive events are very rarely reconstructed because they produce no tracks in the midrapidity region



15

# **UNCERTAINTY SOURCES**

- Uncertainty sources:
  - Uncertainty of the diffraction tuning
  - Model dependence

  - ambiguous)

#### • Extrapolation to $p_T = 0$ (the distribution of tracks is unknown at low $p_T$ ) Ambiguous tracks (a track compatible with more than 1 collision is called



#### THE AMBIGUOUS TRACK ISSUE

- In Run 3 : continuous readout (no trigger), everything is read
- MFT time resolution :  $4 15 \ \mu s$ 
  - At an interaction rate of 500 kHz it means 1 collision every 2  $\mu s$
  - average
- More ambiguous tracks with higher IR
- Can quickly become an issue

• Each MFT track would then be compatible in time with 2 - 7.5 collisions in



# **SUMMARY AND OUTLOOK**

- Midrapidity results compatible with previously published ones
  - Validation of new ITS data

- Future developments:
  - Evaluate uncertainty contributions
  - Reduce the track ambiguity for higher IR productions
  - Finalize the tuning of MC simulation including diffraction
  - Reduce systematic uncertainty

MFT is fully functional, producing promising performance plots: ready for physics results

IR = Interaction Rate



# Thank you for your attention



#### SOURCES

- Wolschin G. Aspects of Relativistic Heavy-Ion Collisions. Universe. 2020; 6(5):61. https://doi.org/10.3390/universe6050061
- ALICE Detector, Jean Fiete Grosse-Oetringhaus, 2009
- J. Adam et al. (ALICE), "Charged-particle multiplicities in proton-proton collisions at  $\sqrt{s} = 0.9$  to 8 TeV", <u>Eur. Phys. J. C 77, 33 (2017) 10.1140/epjc/s10052-016-4571-1</u>, arXiv:1509.07541 [nucl-ex].
- A. Alkin and B. Kim, Analysis note: "Charged particle multiplicity and pseudorapidity counting algorithms, tech. rep. (ALICE-ANA-2015-2432, 2017).

ALICE definition of primary particles <u>https://cds.cern.ch/record/2270008/files/cds.pdf</u>

Measurement of the Charged-Particle Multiplicity in Proton-Proton Collisions with the

density measurements in pp collisions from  $\sqrt{s} = 0.9$  to 8 TeV", using improved track



### ABBREVIATIONS

- OCD: Quantum Chromo Dynamics
- ALICE: A Large Ion Collider Experiment
- MFT: Muon Forward Tracker
- ITS: Inner Tracking System
- MC: Monte Carlo
- CMOS: Complementary Metal-Oxide-Semiconductor
- Acc x Eff, AxE: Acceptance x Efficiency
- IR: Interaction Rate

- TPC: Time Projection Chamber
- FIT: Fast Interaction Trigger
- DCA: Distance of Closest Approach







# **RUN 3 AT 13.6 TEV**

#### Conventional Run 3 data taking started in July 2022



No MC simulation available with the same conditions: No correction profile available







# PLANS TO REDUCE THE TRACK AMBIGUITY

- Match the track with the best collision by computing the transverse DCA
- Matching with FIT (Fast Interaction Trigger)
  - Precision of FT0-C: 25ns
  - FT0-C : 28 modules (very poor spatial resolution)

\* DCA = Distance of Closest Approach

https://alice-collaboration.web.cern.ch/menu\_proj\_items/FIT

#### **FTO-C Cherenkov detector**

 $-3.4 \le \eta \le -2.3$ -0.8 m away from IP





# FULL FIT DETECTOR



