

Testing CPT Symmetry

Mass measurements of the $E(dss)$ and $\Omega(sss)$ with ALICE using pp data from LHC run 2

Iouri Belikov, David Chinellato, Antonin Maire, Kai Schweda, Georgijs Skorodumovs, Romain Schotter PhD student – 2020-2023

Supervisors : Antonin Maire & Boris Hippolyte

I) Introduction

- 1. Motivations
- 2. The ALICE set-up
- II) The analysis
	- 1. Analysis details
	- 2. The systematic study
		- a. Topological and kinematic selections
		- b. Energy loss corrections
		- c. OOB pile-up rejection
		- d. Magnetic field precision
		- e. Fit procedure
		- f. Imprecision on the PDG mass
		- g. Re-weighting the MC and correcting for the residual mass offset
	- 3. Final results

III) Conclusion

LTCE

- The Standard Model was initially built upon the invariance of the discrete symmetries of
	- Charge conjugation (C),
	- Parity transformation (P),
	- Time reversal (T),
	- And the combined CPT-symmetry

• Strong and electromagnetic interactions are invariant under these transformations

BUT the weak interaction violates CP-symmetry \rightarrow T is violated

- Only the combined CPT-symmetry is conserved
	- \rightarrow 2 consequences :
	- 1) Particles and antiparticles share the same fundamental properties Ex : Lifetime, mass,... (except for the sign of the quantum numbers)
	- 2) Particles and antiparticles are created in pairs

 \rightarrow contradiction with astronomical observations (matter-antimatter asymmetry)

- CP violation is too small to account for the matter-antimatter asymmetry \rightarrow need additionnal sources of symmetry violation including CPTsymmetry violation
- It is decisive to test CPT invariance, especially when a precision gain is possible

Previous mass measurements suffer of low statistics Q_z mass

Ξ^- MASS

The fit uses the $E^-, \overline{E}^+,$ and E^0 masses and the $E - \overline{E}^+$ mass difference. It assumes that

The fit assumes the Ω^- and $\overline{\Omega}^+$ masses are the same, and averages them to

- With the LHC Run 2 data, we have a tremendous amount of statistics $\rightarrow \sim 1.6 \times 10^9$ pp collisions at 13 TeV $\sim 140 \times 10^6$ E or Ω candidates
- Goal : Using the **ALICE detector**
	- Provide new mass measurements of the Ξ and Ω
	- And compute their mass difference to test CPT invariance

Previous mass measurements suffer of low statistics

- With the LHC Run 2 data, we have a tremendous amount of statistics $\rightarrow \sim 1.6 \times 10^9$ pp collisions at 13 TeV $\sim 140 \times 10^6$ E or Ω candidates
- Goal : Using the **ALICE detector**
	- Provide new mass measurements of the Ξ and Ω
	- And compute their mass difference to test CPT invariance

The ALICE set-up

ALICE is composed of 19 detection systems (at least during LHC Runs 1 & 2)

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure
	- f. Imprecision on the PDG mass
	- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

The dataset

Objective : measure the mass of the Ξ and Ω , using LHC Run 2 data

- Data :
	- $\sim 1.6 \times 10^9$ pp collisions at $\sqrt{s} = 13 \text{ TeV}$ (LHC16 + LHC17 + LHC18)
	- MC data (67M), general purpose
	- MC data (6M), enriched in Ξ and Ω
- **Event Selection:**
	- Minimum bias $+$ high multiplicity events
	- Remove in-bunch (IB) and out-of-bunch (OOB) pile up
- Analysis task :

[https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/](https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2.h) [Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2](https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2.h)

Analysis details

 \bullet Ξ and Ω will be studied in the following decay channel:

 Ξ and Ω are distinguished from the combinatorial background using topological selections

selections

 Ξ are reconstructed using topological selections

Cascade selections

- Track selections :
	- \bullet |η| < 0.8
	- TPC refit
	- TPC Nbr Crossed Rows > 70
	- TPC PID Nsigma < 3

V0 selections

- OOB pile-up rejection For at least one of the daughter:
	- One hit in the SPD detectors, or
	- One hit in the TOF detector

Ω selections

 Ω are reconstructed using topological selections

Cascade selections

- Track selections :
	- \bullet |η| < 0.8
	- TPC refit
	- TPC Nbr Crossed Rows > 70
	- TPC PID Nsigma < 3

V0 selections

- OOB pile-up rejection For at least one of the daughter:
	- One hit in the SPD detectors, or
	- One hit in the TOF detector

Mass extraction

ALICE

- Background substraction for inv. mass analysis :
	- \bullet Fit with a *modified* Gaussian $+$ linear function

$$
\text{Modified Gaussian} = A \cdot \exp\left(-0.5u^{1 + \frac{1}{1 + 0.5u}}\right) \quad ; \quad u = \left|\frac{x - \mu}{\sigma}\right|
$$

First Ξ mass measurements

$\rm M_{PDG}(E) = 1321.71\text{\O}\pm 0.07\text{\O}\ MeV/c^2$

First Ω mass measurements

ALICE

$\rm M_{PDG}(\Omega) = 1672.45\varnothing \pm 0.29\varnothing~MeV/c^2$

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure
	- f. Imprecision on the PDG mass
	- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

Systematic effects

-
- The sources of systematic effects that have been (or will be) studied :
	- Topological and kinematic selections
	- Energy loss correction
		- Correction on the energy loss corrections
		- Precision of our energy loss corrections
		- Material budget
	- OOB pile-up rejection
	- Magnetic field precision
	- ◆ Fit procedure
		- Choice of model
		- Choice of fitting range
		- Binning of the invariant mass
	- Imprecision on the PDG mass
	- Residual mass offset in MC

Systematic effects

- The sources of systematic effects that have been (or will be) studied :
	- Topological and kinematic selections
	- Energy loss correction
		- Correction on the energy loss corrections
		- Precision of our energy loss corrections
		- Material budget
	- OOB pile-up rejection
	- Magnetic field precision
	- ◆ Fit procedure
		- Choice of model
		- Choice of fitting range
		- Binning of the invariant mass
	- Imprecision on the PDG mass
	- Residual mass offset in MC

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure
	- f. Imprecision on the PDG mass
	- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

Strategy:

- Vary the topological and kinematic selections (14 selections)
- Observe how the mass and the error are distributed over 20 000 different set of selections

• For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)

-
- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)

-
- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times

-
- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times
- For each set of selections i , we extract :
	- The measured mass μ_i Mass = Mean = $\bar{\mu}$
 σ_{syst} = Std. Dev. \rightarrow store in an histogram \rightarrow
	- The error on the mass σ_i
		- \rightarrow store in an histogram \rightarrow

 $\sigma_{\text{stat}} = \sigma$

- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times
- For each set of selections i , we extract :
	- The measured mass difference $\Delta \mu_i / \mu_i^{\text{part}} = (\mu_i^{\text{part}} \mu_i^{\text{part}})/\mu_i^{\text{part}}$

$$
\rightarrow \text{store in an histogram} \longrightarrow \begin{cases} \frac{\Delta \text{Mass}}{\text{Mass}} = \text{Mean} = \frac{\Delta \mu_i}{\mu_i^{\text{part.}}} \\ \sigma_{\text{syst}} = \text{Std. Dev.} \end{cases}
$$

The error on the mass difference $\sigma_{(\mu_s^{\text{part}} - \mu_s^{\text{part}})/\mu_s^{\text{part}}}$

$$
\rightarrow \text{store in an histogram} \longrightarrow \sigma_{\text{stat}} = \overline{\sigma}_{(\mu_i^{\text{part}} - \mu_i^{\text{part}})/\mu_{i-25}^{\text{part}}}
$$

● Mass values: WORK IN PROGRESS

● Mass difference values: WORK IN PROGRESS

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
		- i. Correction on the dE/dx corrections
		- ii. Precision of our dE/dx corrections
		- iii. Material budget
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure
	- f. Imprecision on the PDG mass
	- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

Check : compare with PDG mass

● Mass values : WORK IN PROGRESS

- Gap between our mass values and the PDG ones (almost 1σ for the Ξ)
- To check that the analysis is working properly :

- Take a particle whose PDG mass is evaluated very precisely ($\sigma \sim$ few keV/c²),
- Check that the mass extracted by the analysis corresponds to the PDG mass
- \rightarrow The extracted mass is above the PDG mass by : \sim 300 keV/c² for Λ and

28 ~ 600 keV/ c^2 for K^o

Dependence of the mass shift

- The gap between the extracted mass and the PDG mass seems to depend on :
	- Radial position of the decay point
	- The transverse momentum

 $m_{\rm PDG}(\Lambda) = 1115.683 \pm 0.006~{\rm MeV/c^2}$

 $m_{\rm PDG}({\bf K_S^0}) = 497.611 \pm 0.013 \,\, {\rm MeV/c^2}$

- Once all tracks are reconstructed, they are **propagated to their point of closest** approach to the primary vertex $(=$ hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

Inward propagation (TPC→PV) :

 \rightarrow add energy

Outward propagation (PV→TPC):

 \rightarrow subtract energy

- Once all tracks are reconstructed, they are **propagated to their point of closest** approach to the primary vertex $(=$ hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest** approach to the primary vertex $(=$ hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest** approach to the primary vertex $(=$ hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest** approach to the primary vertex $(=$ hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

Λ Invariant mass

To get an idea whether these corrections are going in the right direction or not

 \rightarrow look at the invariant mass

Invariant mass Vs radius in MC

- The mass shift is dependent on the radial position of the V0
	- \rightarrow with our dE/dx, we would expect the trend to be less pronounced
- In MC, we get the following results:

Invariant mass Vs radius in real data

- The mass shift is dependent on the radial position of the V0
	- \rightarrow with our dE /dx, we would expect the trend to be less pronounced
- In real data, we get the following results:

 $m_{\rm PDG}(\Lambda) = 1115.683 \pm 0.006~{\rm MeV/c^2}$

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure

f. Imprecision on the PDG mass

- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

Imprecision on the PDG mass

The expression of the invariant mass is given by:

$$
m_{\rm inv.} = \sqrt{(E_1 + E_2)^2 - (\mathbf{p}_{\rm Tot,1} + \mathbf{p}_{\rm Tot,2})^2}
$$

$$
E_1 = \sqrt{\mathbf{p}_{\text{Tot},1}^2 + m_{\text{PDG},1}^2} \qquad E_2 = \sqrt{\mathbf{p}_{\text{Tot},2}^2 + m_{\text{PDG},2}^2}
$$

and it depends on the PDG mass of the two decay daughters.

However, the PDG mass values have a finite precision

Strategy :

- Shift the PDG mass values randomly 20 000 times according to a centered Gaussian of standard deviation σ_{PDG}
- Systematic uncertainty = Std. Dev. of the measured mass

Imprecision on the PDG mass

• The expression of the invariant mass is given by:

$$
m_{\rm inv.} = \sqrt{(E_1 + E_2)^2 - (\mathbf{p}_{\rm Tot,1} + \mathbf{p}_{\rm Tot,2})^2}
$$

$$
E_1 = \sqrt{\mathbf{p}_{\text{Tot},1}^2 + m_{\text{PDG},1}^2} \qquad E_2 = \sqrt{\mathbf{p}_{\text{Tot},2}^2 + m_{\text{PDG},2}^2}
$$

However, the PDG mass values have a finite precision

Results:

WORK IN PROGRESS WORK IN PROGRESS

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure
	- f. Imprecision on the PDG mass
	- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

Systematic study results

Ξ

WORK IN PROGRESS

Systematic study results

Ω

WORK IN PROGRESS

Final results WORK IN PROGRESS

Final results

● Mass values : WORK IN PROGRESS

- Improve current PDG mass values by a factor \sim 2.4 for Ξ and \sim 8.2 for Ω
- Test CPT-invariance : mass difference values WORK IN PROGRESS

- Improve current PDG mass diff. values by a factor \sim 7 for Ξ and \sim 3.6 for Ω
- Mass difference ~ 0 : CPT is still valid but further constrained.

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) The analysis

- 1. Analysis details
- 2. The systematic study
	- a. Topological and kinematic selections
	- b. Energy loss corrections
	- c. OOB pile-up rejection
	- d. Magnetic field precision
	- e. Fit procedure
	- f. Imprecision on the PDG mass
	- g. Re-weighting the MC and correcting for the residual mass offset
- 3. Final results

III) Conclusion

A Large Ion Collider Experiment

Conclusion

Results:

Our measures

- Improve the PDG mass and mass difference values by at least a factor 2 and 3 respectively
- ◆ Are consistent with the CPT-invariance (Mass difference \sim 0) but further constrain its validity
- Most of the systematics have been dealt with:
	- For the rest, need to extract new datasets
	- Experienced problems on that for \sim 6 months
	- Our issue has been solved on the 29/09/2022

 \rightarrow started the process of extracting new datasets

Conclusion

Results:

- Improve the PDG mass and mass difference values by at least a factor 2 and 3 respectively
- Are consistent with the CPT-invariance (Mass difference \sim 0) but further constrain its validity

Most of the systematics have been dealt with, only three are left:

- Material budget
- OOB pile-up rejection
- Precision of dE/dx corrections

A glimpse on the complexity of such a measurement :

 For example, our mass measurements have an offset wrt the PDG mass, mainly coming from extra energy addition during V0/cascade finding \rightarrow corrected now

Next steps :

- Deal with the last systematic uncert.
- Propose to publish our results (paper proposal on the 9th October)

Backup slides