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What is the electric dipole moment?

𝑺𝒑𝒊𝒏

𝑩

Spin ½ particle in a magnetic field

• 𝐻 = −𝜇 𝝈 ⋅ 𝑩

• With 𝑩 = 𝐵0𝒖𝒛, precession frequency given by ℏ2𝜋𝑓 = 2𝜇 𝐵0

• Neutron in 𝐵0 = 1 𝜇T→ 𝑓 ≈ 30 𝑠−1

1. Definition and 
motivations
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𝑺𝒑𝒊𝒏

𝑩

𝑺𝒑𝒊𝒏

𝑬

What about a spin ½ particle in an electric field?

• 𝐻 = −𝑑 𝝈 ⋅ 𝑬

• With 𝑬 = 𝐸0𝒖𝒛, precession frequency given by ℏ2𝜋𝑓 = 2𝑑 𝐸0

• Neutron in 𝐸 = 1 𝑘V/cm→ 𝑓 < 4 year−1 (according to the current nEDM limit) 

↔ 𝒅𝒏 almost zero

1. Definition and 
motivations

Spin ½ particle in a magnetic field

• 𝐻 = −𝜇 𝝈 ⋅ 𝑩

• With 𝑩 = 𝐵0𝒖𝒛, precession frequency given by ℏ2𝜋𝑓 = 2𝜇 𝐵0

• Neutron in 𝐵0 = 1 𝜇T→ 𝑓 ≈ 30 𝑠−1

What is the electric dipole moment?
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Why measure the neutron EDM?

Cosmological motivation: explain baryon asymmetry  𝜂 =
𝑛𝐵−𝑛ഥ𝐵
𝑛𝛾

≈ 10−10

Sakharov conditions for baryogenesis:

1. Non-conservation of baryonic number
2. Out-of-equilibrium thermal interactions
3. Violation of 𝑪 and 𝑪𝑷 symmetries

1. Definition and 
motivations
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Why measure the neutron EDM?

Cosmological motivation: explain baryon asymmetry  𝜂 =
𝑛𝐵−𝑛ഥ𝐵
𝑛𝛾

≈ 10−10

Sakharov conditions for baryogenesis:

1. Non-conservation of baryonic number
2. Out-of-equilibrium thermal interactions
3. Violation of 𝑪 and 𝑪𝑷 symmetries

EDMs are described by couplings that violate 𝑪𝑷!

𝑺𝒑𝒊𝒏 𝑺𝒑𝒊𝒏

𝑡 𝑡𝑬 𝑬

Violates 𝑇→ violates 𝐶𝑃 by 𝐶𝑃𝑇

1. Definition and 
motivations
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Formally: CP violating term (EM field and quark coupling)

ℒ =
𝜇

2
ҧ𝑓𝜎𝜇𝜈𝑓 𝐹

𝜇𝜈 −
𝑖𝑑

2
ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝐻 = −𝜇 𝝈 ⋅ 𝑩 − 𝑑 𝝈 ⋅ 𝑬

ℒ =
𝜇

2
ҧ𝑓𝜎𝜇𝜈𝑓 𝐹

𝜇𝜈 +
𝑖𝑑

2
ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝐻 = −𝜇 𝝈 ⋅ 𝑩 + 𝑑 𝝈 ⋅ 𝑬

𝐶𝑃

1. Definition and 
motivations
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In the Standard Model:

• CKM phase contribution to quark EDMs through at least 3 loops diagrams 
→ very negligible (𝑑𝑛 ∼ 10−32𝑒. cm).

• QCD contribution 
𝛼

8𝜋
ҧ𝜃 𝐺𝜇𝜈 ෪𝐺𝜇𝜈 should generate huge EDMs (𝑑𝑛 ∼ 10−16𝑒. cm). : 

current limit 𝒅𝒏 < 𝟏𝟎−𝟐𝟔𝒆. 𝒄𝒎 ⇒ ҧ𝜃 < 10−10(strong CP problem).

Beyond the SM:

• (ex) modified Higgs-fermion Yukawa coupling ℒ = −
𝑦𝑓

2
𝜅𝑓 ҧ𝑓𝑓ℎ + 𝑖 ǁ𝜅𝑓 ҧ𝑓𝛾5𝑓ℎ generates EDM at 2 loops.

Formally: CP violating term (EM field and quark coupling)

ℒ =
𝜇

2
ҧ𝑓𝜎𝜇𝜈𝑓 𝐹

𝜇𝜈 −
𝑖𝑑

2
ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝐻 = −𝜇 𝝈 ⋅ 𝑩 − 𝑑 𝝈 ⋅ 𝑬

ℒ =
𝜇

2
ҧ𝑓𝜎𝜇𝜈𝑓 𝐹

𝜇𝜈 +
𝑖𝑑

2
ҧ𝑓𝜎𝜇𝜈𝛾5𝑓 𝐹

𝜇𝜈

𝐻 = −𝜇 𝝈 ⋅ 𝑩 + 𝑑 𝝈 ⋅ 𝑬

𝐶𝑃

1. Definition and 
motivations
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How do we measure the neutron EDM?
2. Measurement

𝑺𝒑𝒊𝒏

𝑩 𝑬

2𝜋𝑓 =
2𝜇

ℏ
𝐵 ±

2𝑑

ℏ
|𝐸| 𝑓 ↑↑ − 𝑓 ↑↓ = −

2

𝜋ℏ
𝑑 |𝐸|
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How do we measure the neutron EDM?

𝑺𝒑𝒊𝒏

𝑩 𝑬

2𝜋𝑓 =
2𝜇

ℏ
𝐵 ±

2𝑑

ℏ
|𝐸| 𝑓 ↑↑ − 𝑓 ↑↓ = −

2

𝜋ℏ
𝑑 |𝐸|

𝑓larmor ≈ 30 𝑠−1

at 𝐵 = 1𝜇T

If 𝑑𝑛 = 10−26𝑒. cm :

𝑓elec ≈ 2 year−1

at 𝐸 = 15 𝑘V. cm−1

2. Measurement
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How do we measure the neutron EDM?

𝑺𝒑𝒊𝒏

𝑩 𝑬

2𝜋𝑓 =
2𝜇

ℏ
𝐵 ±

2𝑑

ℏ
|𝐸| 𝑓 ↑↑ − 𝑓 ↑↓ = −

2

𝜋ℏ
𝑑 |𝐸|

𝑓larmor ≈ 30 𝑠−1

at 𝐵 = 1𝜇T

If 𝑑𝑛 = 10−26𝑒. cm :

𝑓elec ≈ 2 year−1

at 𝐸 = 15 𝑘V. cm−1

What can we do to detect something that small ?

• Maximize the interaction time

• Maximize the statistics

• Control the magnetic field

→ Ultra Cold Neutrons

→ Large cell volume, efficient UCN transport

→ Hg co-magnetometry, magnetic shielding (MSR, AMS), field mapping

→ Deal with systematics: false EDM, gravitational shift

2. Measurement
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How do we measure the neutron EDM? 

𝑺𝒑𝒊𝒏

𝑩 𝑬

2𝜋𝑓 =
2𝜇

ℏ
𝐵 ±

2𝑑

ℏ
|𝐸| 𝑓 ↑↑ − 𝑓 ↑↓ = −

2

𝜋ℏ
𝑑 |𝐸|

𝑓larmor ≈ 30 𝑠−1

at 𝐵 = 1𝜇T

If 𝑑𝑛 = 10−26𝑒. cm :

𝑓elec ≈ 2 year−1

at 𝐸 = 15 𝑘V. cm−1

What can we do to detect something that small ?

• Maximize the interaction time

• Maximize the statistics

• Control the magnetic field

→ Ultra Cold Neutrons

→ Large cell volume, efficient UCN transport

→ Hg co-magnetometry, magnetic shielding (MSR, AMS), field mapping, …

→ Deal with systematics: false EDM, gravitational shift, …

2. Measurement
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2. Measurement

Hg co-magnetometry to compensate 
magnetic field fluctuations

Problem:
Uncertainty on 𝑓 dominated by magnetic field fluctuations!

𝑩 𝑩𝑬𝑬
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2. Measurement

Hg co-magnetometry to compensate 
magnetic field fluctuations

Problem:
Uncertainty on 𝑓 dominated by magnetic field fluctuations!

Solution:
Measure instead the ratio of mercury and neutron frequencies:

ℛ =
𝑓𝑛
𝑓𝐻𝑔

=
𝛾𝑛
𝛾𝐻𝑔

∓
𝐸

𝜋ℏ𝑓𝐻𝑔
𝑑𝑛

Contribution from EDM 

𝑓𝑛 =
𝛾𝑛

2𝜋
𝐵0 ∓

𝑑𝑛

𝜋ℏ
𝐸

No contribution from EDM! 

𝑓𝐻𝑔 =
𝛾𝐻𝑔

2𝜋
𝐵0

…which is free from the magnetic field fluctuations!

𝑩 𝑩𝑬𝑬
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3. Field mapping 

How do we parametrize the magnetic field?

Polynomial field expansion

𝑩 𝒓 =

𝑙=0

+∞



𝑚=−𝑙

𝑙

𝐺𝑙𝑚𝜫𝒍𝒎 𝒓
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3. Field mapping 

How do we parametrize the magnetic field?

Polynomial field expansion

𝑩 𝒓 =

𝑙=0

+∞



𝑚=−𝑙

𝑙

𝐺𝑙𝑚𝜫𝒍𝒎 𝒓

Maxwell’s equations 
𝛁 ⋅ 𝑩 = 0 and 𝛁 × 𝑩 = 𝟎

𝑩(𝒓) = 𝛁Σ(𝒓)

with 

ΔΣ(𝑟, 𝜑, 𝜃) = 0

Laplace equation in spherical coordinates
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3. Field mapping 

How do we parametrize the magnetic field?

Polynomial field expansion

𝑩 𝒓 =

𝑙=0

+∞



𝑚=−𝑙

𝑙

𝐺𝑙𝑚𝜫𝒍𝒎 𝒓

Maxwell’s equations 
𝛁 ⋅ 𝑩 = 0 and 𝛁 × 𝑩 = 𝟎

𝑩(𝒓) = 𝛁Σ(𝒓)

with 

ΔΣ(𝑟, 𝜑, 𝜃) = 0

Laplace equation in spherical coordinates

Harmonic modes 𝜫𝒍𝒎 𝒓
deduced from solutions 

of Laplace equation
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3. Field mapping 

How do we parametrize the magnetic field?

Polynomial field expansion

𝑩 𝒓 =

𝑙=0

+∞



𝑚=−𝑙

𝑙

𝐺𝑙𝑚𝜫𝒍𝒎 𝒓

Maxwell’s equations 
𝛁 ⋅ 𝑩 = 0 and 𝛁 × 𝑩 = 𝟎

𝑩(𝒓) = 𝛁Σ(𝒓)

with 

ΔΣ(𝑟, 𝜑, 𝜃) = 0

Laplace equation in spherical coordinates

Harmonic modes 𝜫𝒍𝒎 𝒓
deduced from solutions 

of Laplace equation

So what do we measure? The generalized gradients 𝑮𝒍𝒎 :

• “Online” with mercury co-magnetometry and cesium magnetometers.

• “Offline” with the mapper.
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3. Field mapping 
𝐺𝑙𝑚 extraction

1) Do cylindrical map 𝐵𝑧(𝜌, 𝜑, 𝑧)
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3. Field mapping 
𝐺𝑙𝑚 extraction

2) Fit rings with fourier series:

𝐵𝑧 𝜌, 𝜑, 𝑧 = 

𝑚≥0

𝑎𝑚
𝑧
𝜌, 𝑧 cos 𝑚𝜑 + 𝑏𝑚

𝑧
𝜌, 𝑧 sin(𝑚𝜑)

1) Do cylindrical map 𝐵𝑧(𝜌, 𝜑, 𝑧)
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3. Field mapping 
𝐺𝑙𝑚 extraction

3) Fit fourier coefficients with harmonic polynomial:

𝑎𝑚
𝑧
(𝜌, 𝑧) =

𝑙≥0

𝐺𝑙𝑚Π𝑙𝑚(𝜌, 𝑧)

2) Fit rings with fourier series:

𝐵𝑧 𝜌, 𝜑, 𝑧 = 

𝑚≥0

𝑎𝑚
𝑧
𝜌, 𝑧 cos 𝑚𝜑 + 𝑏𝑚

𝑧
𝜌, 𝑧 sin(𝑚𝜑)

1) Do cylindrical map 𝐵𝑧(𝜌, 𝜑, 𝑧)
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3. Field mapping 
𝐺𝑙𝑚 extraction

3) Fit fourier coefficients with harmonic polynomial:

𝑎𝑚
𝑧
(𝜌, 𝑧) =

𝑙≥0

𝐺𝑙𝑚Π𝑙𝑚(𝜌, 𝑧)

2) Fit rings with fourier series:

𝐵𝑧 𝜌, 𝜑, 𝑧 = 

𝑚≥0

𝑎𝑚
𝑧
𝜌, 𝑧 cos 𝑚𝜑 + 𝑏𝑚

𝑧
𝜌, 𝑧 sin(𝑚𝜑)

1) Do cylindrical map 𝐵𝑧(𝜌, 𝜑, 𝑧)

4) Get
𝐺𝑙𝑚spectrum
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3. Field mapping 

One use of field mapping: moving the 𝐵0 coil
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3. Field mapping 

One use of field mapping: moving the 𝐵0 coil
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3. Field mapping 

One use of field mapping: moving the 𝐵0 coil
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3. Field mapping 

One use of field mapping: moving the 𝐵0 coil

Finite Element calculation → 𝐺10 = 6.45 × 𝛿𝑧

Result: we need to move the coil by 3mm!



Because the magnetic field is not perfectly uniform and because the mercury atoms and the neutrons do not move at the same velocity, 
they do not see the same magnetic field. 
This induces extra terms in the frequency ratio that act like EDMs:

ℛ =
𝛾𝑛
𝛾𝐻𝑔

∓
2 𝐸

𝜋ℏ 𝛾𝐻𝑔𝐵0
𝑑𝑛 + 𝑑𝑛

false + 𝑑𝑛←𝐻𝑔
false +⋯

False neutron EDM induced by 
the false mercury EDM

An important systematic effect, the “false EDM”

26

4. Systematics



Because the magnetic field is not perfectly uniform and because the mercury atoms and the neutrons do not move at the same velocity, 
they do not see the same magnetic field. 
This induces extra terms in the frequency ratio that act like EDMs:

ℛ =
𝛾𝑛
𝛾𝐻𝑔

∓
2 𝐸

𝜋ℏ 𝛾𝐻𝑔𝐵0
𝑑𝑛 + 𝑑𝑛

false + 𝑑𝑛←𝐻𝑔
false +⋯

False neutron EDM induced by 
the false mercury EDM

An important systematic effect, the “false EDM”
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𝑏(𝜏) = 𝑩𝑻 𝒓(𝜏) +
𝐸

𝑐2
× ሶ𝒓(𝜏) ⋅ 𝒆𝒙 + 𝑖𝒆𝒚

non-uniform field + motional field 

Neutrons

Hg atoms

horizontal field fluctuations

• Larger motional field larger for fast Hg 
atoms than for slow neutrons.

𝑣𝑛 ≈ 3 𝑚. 𝑠−1

𝑣Hg ≈ 150 𝑚. 𝑠−1

4. Systematics



Because the magnetic field is not perfectly uniform and because the mercury atoms and the neutrons do not move at the same velocity, 
they do not see the same magnetic field. 
This induces extra terms in the frequency ratio that act like EDMs:

ℛ =
𝛾𝑛
𝛾𝐻𝑔

∓
2 𝐸

𝜋ℏ 𝛾𝐻𝑔𝐵0
𝑑𝑛 + 𝑑𝑛

false + 𝑑𝑛←𝐻𝑔
false +⋯

False neutron EDM induced by 
the false mercury EDM

An important systematic effect, the “false EDM”
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𝑏(𝜏) = 𝑩𝑻 𝒓(𝜏) +
𝐸

𝑐2
× ሶ𝒓(𝜏) ⋅ 𝒆𝒙 + 𝑖𝒆𝒚

non-uniform field + motional field 

Neutrons

Hg atoms

horizontal field fluctuations

• Larger motional field larger for fast Hg 
atoms than for slow neutrons.

• “Low-frequency regime” at 𝐵0 = 1 𝜇𝑇
for Hg atoms that have shorter correlation 
time than Larmor time constant.

𝑣𝑛 ≈ 3 𝑚. 𝑠−1 ⇒ 𝜏𝑛,𝑐 > 𝜏𝑛,𝐿

𝑣Hg ≈ 150 𝑚. 𝑠−1 ⇒ 𝜏Hg,𝑐 < 𝜏Hg,𝐿

4. Systematics

𝜏𝐿 =
1

𝛾𝐵0



An expression for the false EDM
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The false EDM is the difference in frequency shifts of opposite electric field configurations

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛
4 𝐸

𝛿𝜔𝐻𝑔(−𝐸) − 𝛿𝜔𝐻𝑔(𝐸))

4. Systematics



An expression for the false EDM

30

The false EDM is the difference in frequency shifts of opposite electric field configurations

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛
4 𝐸

𝛿𝜔𝐻𝑔(−𝐸) − 𝛿𝜔𝐻𝑔(𝐸))

where the frequency shift is given by spin relaxation theory as a function of 
the fluctuating transverse magnetic field

𝛿𝜔𝐻𝑔 =
𝛾𝐻𝑔
2

2
න
0

∞

𝑑𝜏 Im 𝑒𝑖𝜔𝜏 𝑏∗ 0 𝑏(𝜏)

𝑏(𝜏) = 𝑩𝑻 𝒓(𝜏) +
𝐸

𝑐2
× ሶ𝒓(𝜏) ⋅ 𝒆𝒙 + 𝑖𝒆𝒚

Conclusion: the combination of a non-uniform field and moving particles generates a systematic effect

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0

4. Systematics



How do we deal with the false EDM?

A) Estimate it
• @ 𝐵0 = 1 𝜇𝑇

because 𝑑𝑛←𝐻𝑔
false has an analytical expression valid in low frequency 

regime:

𝑑𝑛←𝐻𝑔
false = −

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
𝑥𝐵𝑥 + 𝑦𝐵𝑦

=
ℏ 𝛾𝑛𝛾𝐻𝑔

8𝑐2
𝑅2 𝐺10 − 𝐺30

𝑅2

2
−
𝐻2

4
+ ⋯

…but need to know the generalized gradients accurately

31

4. Systematics

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0



False EDM produced by a linear gradient 
field as a function of holding field 𝐵0

How do we deal with the false EDM?

• @ 𝐵0 = 1 𝜇𝑇

because 𝑑𝑛←𝐻𝑔
false has an analytical expression valid in low frequency 

regime:

𝑑𝑛←𝐻𝑔
false = −

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
𝑥𝐵𝑥 + 𝑦𝐵𝑦

=
ℏ 𝛾𝑛𝛾𝐻𝑔

8𝑐2
𝑅2 𝐺10 − 𝐺30

𝑅2

2
−
𝐻2

4
+ ⋯

…but need to know the generalized gradients accurately.

• @ 𝐵𝑚 ≈ 10 𝜇𝑇 “magic field”

because 𝑑𝑛←𝐻𝑔
false (𝐵𝑚) = 0 for some specific field configuration

…but no analytical expression.

32

A) Estimate it

B) Suppress it

OR

4. Systematics

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0
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4. Systematics

The magic field, take one

1) Calculate the correlation function with a Monte-Carlo simulation 
for a given magnetic configuration

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0

𝒓(𝑡 + 𝜏)𝒓(𝑡)
𝒆𝑥

𝒆𝐳
𝒆𝑦

i. Simulate trajectories 𝒓 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) of Hg atoms

ii. Calculate polynomial pieces 𝑥 𝜏 𝑥𝑖 0 𝑦𝑗 0 with the ergodicity property: 

average over all particles ⇔ time average of one particle over infinite time

lim
𝑇→∞

1

𝑇
න
0

∞

𝑑t 𝑥(𝑡)𝑥 𝑡 + 𝜏
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4. Systematics

The magic field, take one

1) Calculate the correlation function with a Monte-Carlo simulation 
for a given magnetic configuration

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0

𝒓(𝑡 + 𝜏)𝒓(𝑡)
𝒆𝑥

𝒆𝐳
𝒆𝑦

2) Fit the correlation function 𝐶 𝜏 = 𝐹𝑒−𝑓𝜏 − 𝑆𝑒−𝑠𝜏

i. Simulate trajectories 𝒓 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) of Hg atoms

ii. Calculate polynomial pieces 𝑥 𝜏 𝑥𝑖 0 𝑦𝑗 0 with the ergodicity property: 

average over all particles ⇔ time average of one particle over infinite time

lim
𝑇→∞

1

𝑇
න
0

∞

𝑑t 𝑥(𝑡)𝑥 𝑡 + 𝜏
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𝒆𝐳
𝒆𝑦

2) Fit the correlation function

3) Calculate false EDM

𝐶 𝜏 = 𝐹𝑒−𝑓𝜏 − 𝑆𝑒−𝑠𝜏

i. Simulate trajectories 𝒓 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) of Hg atoms

ii. Calculate polynomial pieces 𝑥 𝜏 𝑥𝑖 0 𝑦𝑗 0 with the ergodicity property: 

average over all particles ⇔ time average of one particle over infinite time

lim
𝑇→∞

1

𝑇
න
0

∞

𝑑t 𝑥(𝑡)𝑥 𝑡 + 𝜏
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4. Systematics

The magic field, take one

1) Calculate the correlation function with a Monte-Carlo simulation 
for a given magnetic configuration

𝑑𝑛←𝐻𝑔
false =

ℏ 𝛾𝑛𝛾𝐻𝑔

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0

i. Simulate trajectories 𝒓 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 ) of Hg atoms

ii. Calculate polynomial pieces 𝑥 𝜏 𝑥𝑖 0 𝑦𝑗 0 with the ergodicity property: 

average over all particles ⇔ time average of one particle over infinite time

lim
𝑇→∞

1

𝑇
න
0

∞

𝑑t 𝑥(𝑡)𝑥 𝑡 + 𝜏

𝒓(𝑡 + 𝜏)𝒓(𝑡)
𝒆𝑥

𝒆𝐳
𝒆𝑦

4) Set the holding field to a value that cancels the false 
EDM generated by this magnetic configuration

Example: the “magic” value that cancels the false EDM 
generated by 

𝑩 𝑥, 𝑦, 𝑧 = 𝐺10

−𝑥/2
−𝑦/2
𝑧

is 𝐵mogette = 11.3 𝜇T

problematic field 
configurations

2) Fit the correlation function

3) Calculate false EDM

𝐶 𝜏 = 𝐹𝑒−𝑓𝜏 − 𝑆𝑒−𝑠𝜏
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4. Systematics

The magic field, take two
➢ 1st method is biased by the correlation function fit

➢ The correlation function of a signal is linked to its Power 
Spectral Density via the Wiener-Khinchin theorem

𝑆𝑖𝑗 𝜔 = න
−∞

+∞

𝑑𝜏 𝑥𝑖 0 𝑥𝑗(𝜏) 𝑒
−𝑖𝜔𝜏
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4. Systematics

The magic field, take two
➢ 1st method is biased by the correlation function fit

➢ The correlation function of a signal is linked to its Power 
Spectral Density via the Wiener-Khinchin theorem

𝑆𝑖𝑗 𝜔 = න
−∞

+∞

𝑑𝜏 𝑥𝑖 0 𝑥𝑗(𝜏) 𝑒
−𝑖𝜔𝜏

→ we can access the false EDM through the PSD of Hg motion

𝑆𝑖𝑗 𝜔 = lim
𝑇→∞

1

2𝑇
න
−∞

+∞

𝑑𝑡1 𝑥𝑖 𝑡1 𝑒−𝑖𝜔𝑡1
∗

න
−∞

+∞

𝑑𝑡2 𝑥𝑖 𝑡2 𝑒−𝑖𝜔𝑡2
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4. Systematics

The magic field, take two
➢ 1st method is biased by the correlation function fit

➢ The correlation function of a signal is linked to its Power 
Spectral Density via the Wiener-Khinchin theorem

𝑆𝑖𝑗 𝜔 = න
−∞

+∞

𝑑𝜏 𝑥𝑖 0 𝑥𝑗(𝜏) 𝑒
−𝑖𝜔𝜏

𝑑𝑛←𝐻𝑔
false 𝜔0 = −

ℏ 𝛾𝑛𝛾𝐻𝑔

4𝜋𝑐2
P. Vන

−∞

+∞

𝑑𝜔𝜔
𝑆𝑥𝑥 𝜔 + 𝑆𝑦𝑦 𝜔

𝜔 − 𝜔0

For a linear vertical gradient field:

→ we can access the false EDM through the PSD of Hg motion

𝑆𝑖𝑗 𝜔 = lim
𝑇→∞

1

2𝑇
න
−∞

+∞

𝑑𝑡1 𝑥𝑖 𝑡1 𝑒−𝑖𝜔𝑡1
∗

න
−∞

+∞

𝑑𝑡2 𝑥𝑖 𝑡2 𝑒−𝑖𝜔𝑡2

(some sum of converging integrals in complex plane)

∝
1

𝑁𝑡


𝑗,𝑘,𝑙

𝑁𝑡,𝑁𝑐,𝑁𝑐
𝑥𝑘𝑥𝑙
Δ𝑇𝑗𝜔0



𝑛,𝑚

𝑐𝑘𝑙𝑚𝑛 𝑡𝑚𝑛 𝐼𝑚 𝜔0𝑡𝑚𝑛

𝐼𝑚 𝜔0𝑡 = 𝑃. 𝑉න
−∞

+∞

𝑑𝜈
𝑒𝑖𝜔0𝑡𝜈

𝜈𝑚(𝜈 − 1)

= 𝑖𝜋 sign(𝜔0𝑡) 𝑒𝑖𝜔0𝑡 − 

𝑘=0

𝑚−1
𝑖𝜔0𝑡

𝑘

𝑘!
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4. Systematics

The magic field, take two
➢ 1st method is biased by the correlation function fit

➢ The correlation function of a signal is linked to its Power 
Spectral Density via the Wiener-Khinchin theorem

𝑆𝑖𝑗 𝜔 = න
−∞

+∞

𝑑𝜏 𝑥𝑖 0 𝑥𝑗(𝜏) 𝑒
−𝑖𝜔𝜏

𝑑𝑛←𝐻𝑔
false 𝜔0 = −

ℏ 𝛾𝑛𝛾𝐻𝑔

4𝜋𝑐2
P. Vන

−∞

+∞

𝑑𝜔𝜔
𝑆𝑥𝑥 𝜔 + 𝑆𝑦𝑦 𝜔

𝜔 − 𝜔0

For a linear vertical gradient field:

→ we can access the false EDM through the PSD of Hg motion

𝑆𝑖𝑗 𝜔 = lim
𝑇→∞

1

2𝑇
න
−∞

+∞

𝑑𝑡1 𝑥𝑖 𝑡1 𝑒−𝑖𝜔𝑡1
∗

න
−∞

+∞

𝑑𝑡2 𝑥𝑖 𝑡2 𝑒−𝑖𝜔𝑡2

(some sum of converging integrals in complex plane)

∝
1

𝑁𝑡


𝑗,𝑘,𝑙

𝑁𝑡,𝑁𝑐,𝑁𝑐
𝑥𝑘𝑥𝑙
Δ𝑇𝑗𝜔0



𝑛,𝑚

𝑐𝑘𝑙𝑚𝑛 𝑡𝑚𝑛 𝐼𝑚 𝜔0𝑡𝑚𝑛

𝐼𝑚 𝜔0𝑡 = 𝑃. 𝑉න
−∞

+∞

𝑑𝜈
𝑒𝑖𝜔0𝑡𝜈

𝜈𝑚(𝜈 − 1)

= 𝑖𝜋 sign(𝜔0𝑡) 𝑒𝑖𝜔0𝑡 − 

𝑘=0

𝑚−1
𝑖𝜔0𝑡

𝑘

𝑘!

𝐵mogette = 11.2 ± 0.2 𝜇T
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4. Systematics

• The combination of non-uniformities and relativistic effects in the magnetic field generate a “false EDM”

• This false EDM can be estimated at low fields or suppressed at specific high fields (“magic fields”)

• Different challenges:

1. Low fields: require accurate measurement of generalized gradients 

2. Magic fields: require accurate numerical estimation of magic values



3. B0 coil

The coil system is described by the vector field

𝐼 𝑟 =

0,−𝐼0, 0 if 𝑥 = 𝐿, 𝑦 < 𝐿

𝐼0, 0, 0 if 𝑦 = 𝐿, 𝑥 < 𝐿

0, 𝐼0, 0 if 𝑥 = −𝐿, 𝑦 < 𝐿

−𝐼0, 0, 0 if 𝑦 = −𝐿, 𝑥 < 𝐿

𝐿

Consider the set of linear transformations 

𝐷4ℎ = {𝕀3, 𝑃, 𝑅𝑧, 𝑅𝑧
2, 𝑅𝑧

−1, 𝜎𝑥 , 𝜎𝑥𝑦 , 𝜎𝑦, 𝜎−𝑥𝑦,𝜎𝑧, 𝑅𝑧
′ , 𝑅𝑧

−1′ , 𝑅𝑥
2, 𝑅𝑦

2, 𝜎𝑥𝑦
′ , 𝜎−𝑥𝑦

′ }

• This set together with matrix multiplication (𝐷4ℎ ,×) is a group.

• This group acts on the coil system through a representation (𝑉𝑐 , 𝜌𝑐) of 𝐷4ℎ :
𝜌𝑐 𝑀 : 𝐼 𝑟 → 𝐼′ 𝑟 = 𝑀𝐼 𝑀−1𝑟

≡ 𝜌𝑐 𝑀 𝐼(𝑟)

• 𝜌𝑐 is an irreducible representation.

• All 𝜌𝑐 𝑀 , 𝑀 ∈ 𝐷4ℎ are symmetries of the coil system because they satisfy:
𝐼′ 𝑟 = ±𝐼 𝑟 ⇔ 𝜌𝑐 𝑀 = ±1

3.1 Symmetries of the 𝑩𝟎 coil

Xenon tetrafluoride

apply 𝜎𝑥, 𝜎𝑧, and 𝜎𝑥𝜎𝑧 to 𝑅𝑧 = 𝕀3, 𝑅𝑧 , 𝑅𝑧
2, 𝑅𝑧

−1 ∼ ℤ4

A few facts:

• 𝐷4ℎ is a subgroup of the orthogonal group 𝑂 3
𝐷4ℎ ⊂ 𝑂 3 = 𝑀 ∈ 𝐺𝐿(3,ℝ) 𝑀𝑇𝑀 = 𝕀3

• 𝐷4ℎ is generated by 𝑅𝑧, 𝜎𝑥 , 𝜎𝑧
𝑅𝑧, 𝜎𝑥 , 𝜎𝑧 = 𝐷4ℎ

…

𝜌𝑐 character table 

𝑟 = (𝑥, 𝑦, 𝑧)

satisfies 𝜌𝑐 𝑀𝑁 = 𝜌𝑐 𝑀 𝜌𝑐 𝑁 , ∀𝑀,𝑁 ∈ 𝐷4ℎ
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3. B0 coil
Curie principle → symmetries in the coil system generate symmetries in the magnetic field. 

The group 𝐷4ℎ acts on the magnetic field 𝐵 𝑟 through a representation
(𝑉𝑏 , 𝜌𝑏) of 𝐷4ℎ :

𝜌𝑏 𝑀 :𝐵(𝑟) → 𝐵′ 𝑟 = det 𝑀 𝑀𝐵 𝑀−1𝑟

This alone isn’t very useful for us, as we describe the magnetic field with the 

harmonic decomposition 𝐵 𝑟 = σ𝑙=1
+∞σ𝑚=−𝑙

𝑙 𝐺𝑙𝑚𝛱𝑙𝑚 𝑟 .

→ look for symmetries in the generalized gradients.

Step (1): construct an 𝑛-sized vector:

𝑔 = 𝐺0−1, 𝐺00, 𝐺0−1, … , 𝐺𝐿,−𝐿−1, … , 𝐺𝐿,𝐿+1
with 𝑛 = 𝐿 + 1 𝐿 + 3 , and such that

𝐵 𝑟 = 𝑃 𝑟 𝑔, where 𝑃 𝑟 is some 3 × 𝑛 matrix.

Step (2): find another representation ℝ𝑛, 𝜌 of 𝐷4ℎ which describes the action 
of 𝐷4ℎ on 𝑔 and satisfies for all 𝑀 ∈ 𝐷4ℎ:

𝐵′ 𝑟 = det 𝑀 𝑀𝑃 𝑀−1𝑟 𝑔 = 𝑃 𝑟 𝜌(𝑀)𝑔

Step (3): decompose 𝜌 into a direct sum of irreducible representations (irreps).

→ Irreps of dimension 1 describe symmetries of the generalized gradients iff
their character table matches that of the coil system.

More specifically:

Only need to find irreps for generators 𝑅𝑧 , 𝜎𝑥,𝜎𝑧

We can check that all these representations are irreducible using the 
orthogonality theorem

→ example for 𝜌1𝑙: σ𝑀∈𝐷4ℎ
Tr 𝜌1𝑙 𝑀 = 16
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→ Explicit generalized gradients character table for 𝐿 = 4.

3. B0 coil

Recall: 𝜌𝑐 character table 

Conclusion:

The generalized gradients 𝐺00, 𝐺20, … , 𝐺2𝑛,0
are unaffected by transformations that 
preserve the 𝐵0 coil symmetries.

→ They are said to be allowed by the 
symmetries of the coil.
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Overview of n2EDM
2. Measurement
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2. Measurement

Counting spins with the Ramsey method
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2. Measurement

Counting spins with the Ramsey method

Up-down spin asymmetry 𝐴→ precession frequency 𝑓


