Study of final-state interactions of protons in neutrino-nucleus scattering with INCL and NuWro cascade models

Anna Ershova anna.ershova@cea.fr

IRFU, CEA Saclay

October 28, 2022

Cea Neutrino studies

Cea T2K: design

Cea T2K: ν rate measurement

In order to get accurate neutrino rate, we need to **measure** neutrino energy **precisely**.

- protons hit the target and produce a pion beam
- pions decay and produce neutrinos and muons
- muons are stopped in the beam dump

Because of such construction of the neutrino beam, we **do not know** neutrino energy **precisely**!

How to make neutrinos

CYuki A., higgstan.com

 \mathcal{V} \mathcal{D} energy reconstruction

Energy reconstruction using only muon kinematics (works well for **quasi-elastic reaction**):

$$E_{\nu}^{QE} = \frac{m_p^2 - (m_n - E_B)^2 - m_{\mu}^2 + 2(m_n - E_B)E_{\mu}}{2((m_n - E_B) - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

Energy reconstruction using **muon and kinetic** energy of the nucleon:

$$E_{\nu}^{vis} = E_{\mu} + T_{N}$$

 E_{ν}^{vis} , dashed line — QE formula solid line — μ + N formula

 \mathcal{V} \mathcal{D} energy reconstruction

 E_{ν}^{QE} works fine for the **CCQE** (Charged Current Quasi-Elastic) channel, where we have only μ and a proton in the final state. It is **less accurate** for other channels.

Ceal Importance of nuclear effects

 μ + N formula gives us more **opportunities**, but also it creates more **challenges** for modelling and we need to **understand better nuclear effects** also on neutrons and protons.

We will focus on CCQE ν reaction channel and the Final State Interactions (FSI) that are described by cascade models.

C22 Liège Intra Nuclear Cascade

Projectiles: baryons (nucleons, Λ , Σ), mesons (pions and Kaons) or light nuclei (A \leq 18). No neutrinos yet! We use neutrino vertex from **W** NuWro (widely used ν -nucleus MC generator).

De-excitation: ABLA, SMM, GEMINI

Flexible tool: has been implemented in GEANT4 and GENIE

Phys.Rev.C 87, 014606 (2013) Phys.Rev.C 90, 054602 (2014) Phys.Rev.C 96, 054602 (2017)

Cea Cascade ingredients

Potential

Each nucleon in the nucleus has its **position and momentum** and moves **freely** in a square potential well. Nuclear model is essentially **classical**, with some additional ingredients to mimic quantum effects.

Pauli Blocking

- strict: blocked is p < p_{Fermi}
- $\rightarrow~\text{statistical:}$ count only nearby nucleons
 - strict for the first event and statistical for the subsequent ones

Events inside cascade

- decay/collision
- reflection/transmission with probability to leave the nucleus as a nuclear cluster

Space-kinetic-energy density of protons in ²⁰⁸Pb

Cea Cascade ingredients

Potential

Each nucleon in the nucleus has its **position and momentum** and moves **freely** in a square potential well. Nuclear model is essentially **classical**, with some additional ingredients to mimic quantum effects.

Pauli Blocking

- strict: blocked is p < p_{Fermi}
- $\rightarrow~\text{statistical:}$ count only nearby nucleons
 - strict for the first event and statistical for the subsequent ones

Events inside cascade

- decay/collision
- reflection/transmission with probability to leave the nucleus as a nuclear cluster

Anna Ershova • JRJC • October 28, 2022

Cea Proton momentum before FSI

INCL FSI simulation features a significant fraction of events **without a proton** in the final state, especially low momentum protons region.

Cea Proton momentum after FSI

The FSI part of the distribution is closer to zero for NuWro \rightarrow NuWro Pauli Blocking is less strict than INCL.

Cea Variables of interest

We use **Single Transverse Variables (STV)** that allow to disentangle different effects for better FSI estimation. STV are **observable** and **measurable**.

sensitive to FSI: $\delta \alpha_T = \arccos \frac{-\vec{k}_T \cdot \delta \vec{p}_T}{\vec{k}_T \cdot \delta \vec{p}_T}$ \vec{p}_T^p

sensitive to Fermi Motion: $\delta \vec{p_T} = p_T^{\vec{p}} + p_T^{\vec{\mu}} = p_T^{\vec{n}}$

Anna Ershova • JRJC • October 28, 2022

Cea Comparison to T2K data

Current detector **threshold is too large**, so we **cannot see the difference** between INCL and NuWro. $\times 10^{-39}$

Anna Ershova • JRJC • October 28, 2022

Cea Nuclear clusters reconstruction and identification

Geant4 simulation of the CH scintillator.

How often do nuclear clusters travel enough to be reconstructed as a track?

	α	³ He	Т	D	proton
Travels > 1 cm, $\%$	0.3	1.3	60	72	87
Travels $>$ 3 cm, %	0	0	34	51	74

Can we identify nuclear clusters?

- Deuteron can be misidentified (~20% of events) as protons
- Tritium can be misidentified $({\sim}10\%)$ equally as proton or deuteron
- Main source of misidentification: inelastic events

Nuclear clusters contribute to the **vertex activity** that needs to be accounted for to avoid the ν **energy reconstruction bias**.

Total track length vs. kinetic energy

40

60 80 E_{vis} (MeV) 100 120 140

- We have compared the simulation of the final-state interactions between the **NuWro** and **INCL** cascade models in CCQE events
- Differences in the FSI models:
 - INCL FSI simulation features a significant fraction of events **without a proton** in the final state, especially low momentum protons region
 - INCL tends to re-absorb other particles produced during the cascade
 - An essential novelty of this study is the **simulation of nuclear cluster production** by INCL in FSI of neutrino interactions

A correct FSI simulation is crucial to achieving an accurate ν energy reconstruction.

Future prospects:

- We want to repeat the same study for the antineutrinos: the leading particle will be neutron and its modelling is crucial for the upgrade
- We want to continue the study of the detector response **of clusters**
- CCQE implementation in INCL
- Neutron secondary interactions: using INCL implemented in Geant4

The paper has been published:

Phys.Rev.D, 106 032009 (2022)

BACK UP

Cea Standard INCL cascade

Cea FSI channels

	Channel	NuWro	INCL
	no protons	1.37%	19.47%
	protons	98.63%	80.53%
2	absorption	4.45%	39.49%
to	neutron $+\pi$ production	3.40%	0.60%
bro	π production	0.21%	0%
6	neutron knock-out	91.4%	29.58%
-	nuclear cluster knock-out	0%	30.33%
proton	1 proton, no FSI	70.38%	68.49%
	1 proton only with FSI	2.45%	19.21%
	1p+nucleons/nucl. clusters	26.21%	11.68%
	1p+ π production	0.96%	0.62%

Cea NuWro comparison to T2K data

Cea Comparison to MINER_VA data

C22 Nuclear clusters simulation

Cea Particle identification algorithm

- initial kinetic energy E₀ is reconstructed as a sum of energy deposits along the whole track
- momentum after passing 1 cm is reconstructed using 5 mass hypotheses
- for each momentum hypothesis, the $\frac{dE}{dX}_{\it rec}$ is calculated using the $\frac{dE}{dX}$ dependence on momentum plot

•
$$\chi^2 = \sum \frac{\left(\frac{dE}{dX}_{sim} - \frac{dE}{dX}_{rec}\right)^2}{\sigma^2}$$
 is calculated for each hypothesis

• we choose hypothesis with the **lowest** χ^2

Anna Ershova • JRJC • October 28, 2022