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Neutrino studies
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T2K: design

See also Vlada’s presentation

Phys. Rev. D 87, 012001 (2013)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.87.012001


T2K: ν rate measurement
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In order to get accurate neutrino rate, we need to measure
neutrino energy precisely.
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T2K: ν beam

• protons hit the target and produce a pion beam

• pions decay and produce neutrinos and muons

• muons are stopped in the beam dump

Because of such construction of the neutrino beam, we do not
know neutrino energy precisely!
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ν energy reconstruction

Energy reconstruction using only muon kinemat-
ics (works well for quasi-elastic reaction):

EQEν =
m2
p−(mn−EB)2−m2

µ+2(mn−EB)Eµ
2((mn−EB)−Eµ+pµcosθµ)

Energy reconstruction using muon and kinetic
energy of the nucleon:

Evisν = Eµ + TN

Phys. Rev. D 105, 032010 (2022)

T2K flux

Evisν , dashed line — QE formula

solid line — µ + N formula
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.032010


ν energy reconstruction

EQEν works fine for the CCQE (Charged Cur-
rent Quasi-Elastic) channel, where we have only
µ and a proton in the final state. It is less ac-
curate for other channels.
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Importance of nuclear effects

µ + N formula gives us more opportunities, but also it creates more challenges for modelling
and we need to understand better nuclear effects also on neutrons and protons.

final stateinitial state
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µ
p

n

Free

Nucleon

+

Fermi

Motion
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We will focus on CCQE ν reaction channel and the Final State Interactions (FSI) that are
described by cascade models.
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Liège Intra Nuclear Cascade

Projectiles: baryons (nucleons, Λ, Σ),
mesons (pions and Kaons) or light nuclei
(A ≤ 18). No neutrinos yet! We use
neutrino vertex from NuWro (widely
used ν-nucleus MC generator).

De-excitation: ABLA, SMM, GEMINI

Flexible tool: has been implemented
in GEANT4 and GENIE

Phys.Rev.C 87, 014606 (2013)

Phys.Rev.C 90, 054602 (2014)

Phys.Rev.C 96, 054602 (2017)
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https://nuwro.github.io/user-guide/
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.87.014606
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.90.054602
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.96.054602


Cascade ingredients

Potential

Each nucleon in the nucleus has its position
and momentum and moves freely in a square
potential well. Nuclear model is essentially
classical, with some additional ingredients to
mimic quantum effects.

Pauli Blocking

• strict: blocked is p < pFermi
→ statistical: count only nearby nucleons
• strict for the first event and statistical

for the subsequent ones

Events inside cascade

• decay/collision
• reflection/transmission with probability

to leave the nucleus as a nuclear
cluster

Space–kinetic-energy density of protons in 208Pb

Classical picture

Shell-model picture

Phys.Rev.C 91, 034602 (2021)
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Cascade ingredients

Potential

Each nucleon in the nucleus has its position
and momentum and moves freely in a square
potential well. Nuclear model is essentially
classical, with some additional ingredients to
mimic quantum effects.

Pauli Blocking

• strict: blocked is p < pFermi
→ statistical: count only nearby nucleons
• strict for the first event and statistical

for the subsequent ones

Events inside cascade

• decay/collision
• reflection/transmission with probability

to leave the nucleus as a nuclear
cluster

Nuclear cluster

production

Reflection
Ejection
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Nuclear transparency
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Proton momentum before FSI
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INCL FSI simulation features a significant fraction of events without a proton in the final
state, especially low momentum protons region.
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Proton momentum after FSI
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The FSI part of the distribution is closer to zero for NuWro → NuWro Pauli Blocking is less
strict than INCL.
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Variables of interest

We use Single Transverse Variables (STV) that allow to disentangle different effects for
better FSI estimation. STV are observable and measurable.

sensitive to FSI: δαT = arccos
−~k′T ·δ~p

′
T

k′T ·δp
′
T

sensitive to Fermi Motion: δ ~pT = p~pT + p~µT = p~nT

*
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Single Transverse Variables
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Single Transverse Variables
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Single Transverse Variables
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Single Transverse Variables
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Comparison to T2K data

Current detector threshold is too large, so we cannot see the difference between INCL and
NuWro.

Cuts (MeV):
pµ > 250

450 < pp < 1000

cos(Θµ) > -0.6

cos(Θp) > 0.4

Comparison to MINERνA data
in backup

T2K data taken from
Phys.Rev. D, 98 032003 (2018)
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Nuclear clusters reconstruction and identification

Geant4 simulation of the CH scintillator.
How often do nuclear clusters travel enough to be
reconstructed as a track?

α 3He T D proton
Travels > 1 cm, % 0.3 1.3 60 72 87
Travels > 3 cm, % 0 0 34 51 74

Can we identify nuclear clusters?

• Deuteron can be misidentified (∼20% of events) as
protons

• Tritium can be misidentified (∼10%) equally as proton
or deuteron

• Main source of misidentification: inelastic events

Nuclear clusters contribute to the vertex activity that needs to
be accounted for to avoid the ν energy reconstruction bias.

Total track length vs. kinetic energy

Vertex activity per event
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Summary

• We have compared the simulation of the final-state interactions between the NuWro and
INCL cascade models in CCQE events

• Differences in the FSI models:
• INCL FSI simulation features a significant fraction of events without a proton in the final

state, especially low momentum protons region

• INCL tends to re-absorb other particles produced during the cascade

• An essential novelty of this study is the simulation of nuclear cluster production by INCL
in FSI of neutrino interactions

A correct FSI simulation is crucial to achieving an accurate ν energy reconstruction.
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Prospects

Future prospects:

• We want to repeat the same study for the
antineutrinos: the leading particle will be neutron
and its modelling is crucial for the upgrade

• We want to continue the study of the detector
response of clusters

◦ CCQE implementation in INCL

◦ Neutron secondary interactions: using INCL
implemented in Geant4

The paper has been published:
Phys.Rev.D, 106 032009 (2022)
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BACK UP
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Standard INCL cascade

Rmax
=R0+

8a+rint

radius and diffusiness of the

target nucleus density

working sphere

spectator: E < Ef + Et +
2
3
EC

participant

ejectile

Emission threshold
and Coulomb barrier∗

∗only for protons

total NN X-sec at the

incident energy per

nucleon

rint =
(
σtotNN/π

)1/2

E − Ef − Sphysi >0

Separation energy, taken from mass

tables, for the emission from the actual

nucleus
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FSI channels

Channel NuWro INCL
no protons 1.37% 19.47%

protons 98.63% 80.53%

n
o

p
ro

to
n absorption 4.45% 39.49%

neutron+π production 3.40% 0.60%
π production 0.21% 0%

neutron knock-out 91.4% 29.58%
nuclear cluster knock-out 0% 30.33%

p
ro

to
n 1 proton, no FSI 70.38% 68.49%

1 proton only with FSI 2.45% 19.21%
1p+nucleons/nucl. clusters 26.21% 11.68%

1p+π production 0.96% 0.62%
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NuWro comparison to T2K data
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Comparison to MINERνA data

Cuts (MeV):
1500 < pµ < 10000

450 < pp < 1200
Θµ < 20
Θp < 70
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Nuclear clusters simulation

Energy loss by ionization Visible energy loss by ionization (with Birks
correction)
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Particle identification algorithm

× ...

1 2 n

E0

Edep1 Edep2 Edepn

• initial kinetic energy E0 is reconstructed as a sum of energy deposits along the whole
track

• momentum after passing 1 cm is reconstructed using 5 mass hypotheses

• for each momentum hypothesis, the dE
dX rec

is calculated using the dE
dX dependence on

momentum plot

• χ2 =
∑ ( dE

dX sim
− dE

dX rec)
2

σ2 is calculated for each hypothesis

• we choose hypothesis with the lowest χ2
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