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Disclaimers

* This is a twisted view of instrumentation from the eyes of a particle physicist
* |’ve spent my whole career working for LHC experiments

e 25 minutes is not enough to cover everything, apologies if | left out your favourite
detector / technology

* I’m looking forward to learning from you!
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Instrumentation 101

Experiment: A test under controlled conditions that 1s made to demonstrate a
known truth, examine the validity of a hypothesis, or determine the efficacy
of something previously untried.

Instrumentation: a collective term for measuring instruments that are used
for indicating, measuring and recording physical quantities. Wikipedia

definitions

But it's also a lot of fun!
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Is it a particle zoo?

6 types of quarks
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Or a particle jungle?

* Thanks to the strong interaction: More than 200

mesons + baryons have been found

e + afew exotics (tetraquarks & pentaquarks)

e + the yet un-observed ones!
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Orbital excitation é
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And the domesticated particles?
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e Among all the observed particles, only ~13 can travel more than a few mm before decaying:
+ &+ + pt+ + 10
e, u—y,n,K-,p—,K",n

* Closest detectors to a p-p collision can reach 2 mm

* Particle detectors rely on detecting these particles, measuring their properties and using
conservation laws to reconstruct their “lost" parents
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Hello, | love you, will you tell me your name?

Caserolle of delicious beans
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Hello, | love you, will you tell me your name?

Caserolle of delicious beans

And more importantly... was

there some mogette?
L.

Bl cuteau naturel %
oVt Labe

el Mogette
.« de Vendée
Vﬂcg\ﬁ,\ﬂ. 530 E
‘[‘m;:{(idﬂ Fonxﬂj;m AU NATUREL
20

-

|

N WS

4

C. Agapopoulou JRJC 2022 - Instrumentation & Interdisciplinary session



It’s all about material interaction

We need a “visible” signal from the passage of particles through our detector material

Charged particles: ionisation, [
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Hello, | love you, will you tell me your name?

* The answer for charged particles: make them bend!

d_>
7]; =qgf X B ... - plGeV]=03B[T]p[m]
* Having the measurement of f and p — particle [ &+ Nk L v s

mass & charge

 Measuring the curvature under B-field gives
access to momentum -tracking

¢ And can lead us back to the interaction vertices

. 0] pT pr T o
Momentum resolution: —— ~
) bt W } i

e Good measurement:
e High B-field, lever arm, number of hits

e Good single-hit resolution, not too high pr
(low bending)
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(Gas detectors

Principle of operation

e Particle traverses a gas volume (gas choice
very important!) ionising it

e Created electron/ion pairs drift in electric
field that we apply

e Towards collection anode/cathode —
generated current

Semi-proportional region: Saturation region:A > |08
A=104-10¢ (independent of the number
of primary electrons)

Some properties

* Large coverage, good position resolution & &
low material budget S5

e Low yield of created pairs — Require internal
amplification

Onset of continuous
discharge

e Long collection time due to ion tail — can be
handed by filtering electronics

Charge collected —log scale
i
|

ropo rtional T'j" n

Geiger region:A = 108
Avalanche along the entire wire

imited p

Attachment Voltage applied—linear scale

Proportional region:
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(Gas detectors

First generation: the good-old single-wire:

e Geiger-Muller tube: high voltage — avalanche,
saturation of charge (no particle ID). First electrical
signal from a particle!

e Also single-wire proportional & ionisation counters

Adding some more wires makes all the difference

e Multi-Wire Proportional Counter (MWPC): spacial
resolution achieved by combining signals from all
wires - revolutionised data collection rate

e Adaptations: thin gap, resistive
plate and drift chambers

e Time Projection Chamber (TPC):

e full 3-D reconstruction, x-y from wires and
segmented cathode of MWPC

e z = vdrift x tdrift from drift time

* Not only gases, but also liquid scintillators!

* New generation of MicroPattern gaseous detectors
(MicroMegas, GEMs) — higher segmentation & rates
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Solid-state detectors

Solid-state sensors:

e Semiconductors like Silicon, Germanium and Diamond
e Two sides, one negative charge carriers/electrons (n-type) and one with positive carriers/holes (p-type)

e Put them together (p-n junction) — intermediate region without carriers (depletion region)

e Apply some voltage; forward bias - large current / reverse bias — low transient current (our
preference in HEP!)

Principle of operation:

e \When a particle passes through, it generates electron - hole pairs
* Again, carriers drift due to the electric field
* Signal generation according to Shockley - Ramo theorem

a b p—n Junction with reverse bias ’

Some properties:

* High yield of created pairs -> No/little
internal amplification

* O(um) segmentation & short (O(ns-ps) )
signals -> can withstand very high particle
rates

* Radiation hard

* Expensive & difficult to manufacture
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A few considerations

Strips and pixels

e Strips: 2-D tracking, can be recovered by smart detector design choices (tilting/overlapping
layers)

e Pixels: full 3-D tracking, but large amount of read-out channels, high power consumption

* Usual compromise in HEP: pixels in the innermost layers, strips in the larger outermost area

Some more considerations: 3-D vs planar, timing (4-D tracking)...

Guardring

n'-active edge
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A few considerations

Hybrid or monolithic?

aluminum

backside layer
(ohmic contact)

®, @

 Hybdrid sensors: typical connection of sensor Silicon
to front-end electronics chip through wire and electrons &
bump-bonds solder bump
* Radiation hard, fast timing pixel readout — ===
* difficult and expensive (and you might have electronic chip

to do thousands of them!)

e CMOS technology: integrate signal- e JCJT
processing circuits on sensor substrate AN
(sensor & electronics become one)!

* Cheap, easy to produce and assemble

* Radiation hardness & timing being worked

on

C. Agapopoulou
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Hello, | love you, will you tell me your name?

We measured p ... And what about £ ?

_ dE
» Measuring the energy loss —

dx

e Remember the Bethe-Bloch?

e Excellent forp < 1 GeV/c

* Multi-wire proportional chambers,
Time-projection chambers

ALICE’s TPC PID power
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And what if you’re a photon?
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Photomultipliers

 Primary high energy photon — primary electron

e Electrons accelerated in electric field through a dynode chain producing more electrons —

internal amplification!

e Important properties: gain, quantum efficiency, spectral range, single photon detection...

Photocathode Focusin Photomultiplier

lonisation / electrode tube (PMT)
—
 —1
ligh energy " & &, —
photon | Low energy —
photons  —
7 ) Connecto
L ] 7 N ] pins
Scintillator Primary Secondary Dynode Anode

electron electrons

Can be vacuum
e Old technology, but still used in many experiments

e Quantum efficiency ~ 20-30% @ 400 nm
* High gain, low noise, good timing, radiation hard

LI e, o X s
- - Pl e Vq‘v =
- (> ~ - A ol - .-,’

R A

X
(g4~
s

e Segmenting the anode readout can give position sensitivity (MAPMTS)
e Some disadvantages: bulky, sensitive to magnetic field (and expensive)
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Photomultipliers

* Primary high energy photon — primary electron

e Electrons accelerated in electric field through a dynode chain producing more electrons —
internal amplification!

* Important properties: gain, quantum efficiency, spectral range, single photon detection...

APD
PHOTO-ELECTRONS PHOTOCATHODE
] \.  OPHOTON /
Or solid state photodetectors N\ /s
. -8 kV Electron
* Usually Si, but also Ge ProTooToee, [ ] fromtmgmen
777 N = \1500 time

e Photon induces electron-hole pairs — photocurrent

AVALANCHE ——
DIODE (AD) 2 L

e Quantum efficiency ~ 100 % T Ty Avelanche
 Originally no internal gain (photo-diode) 35\5%%'57_]; 80 times
* Can be induced by operating at high reverse

SIGNAL OUTPUT

voltage — Avalanche Photo-Diode (APD)

* Even higher gain by connecting in parallel many SiPM
APDs together — Silicon Photomultipliers

(SiPMs) {Fe Bom
p 8=
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Measuring energy

e Up to now, we’ve measured the momentum of only charged particles - what about
neutrals?

e \We can take advantage of electromagnetic and hadronic cascades /showers in thick
“absorber” materials — Calorimeters!

e Destructive measurement — original particle is lost (only muons and neutrinos can survive)

 Measuring the shower size gives the original particle energy

EM showers: Hadronic showers:
e Produced by electrons and photons e Produced by hadrons (strong interactions)

e Sequence of pair production & Brem. e Contains EM component
* Shower size described by radiation length Xo Bl e Shower size described by interaction length 4,

ABSORBER , ABSORBER A N

COMPONENT

VAVAVAVAV/ \/\/<

----------------------------

. HADRONIC
COMPONENT

JV215.¢c
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Large calorimeters

CMS homogeneous PbWO4 EM calorimeter
e Homogeneous calorimeters: - : - A A

* Active medium (the material that records
the showers) also acts as absorber (the
material that helps develop the shower)

* Excellent energy resolution

* But no longitudinal information on
shower development

A0/ 470 ) i

 Sampling calorimeters:

* Active medium separate from the

absorber (usually placed in alternating
layers)

* Some energy is always lost in the
absorber — limited energy resolution

* But, information on longitudinal shower
development

C. Agapopoul ,. JRJC 2022 - Instrumentation & Interdisciplinary session 22



An d g I a nt O n eS EAS of cosmic rays in atmosphere

Secondary
e particles

Shower core

Cherenkov _
light detectors | - R
t'; | :1 1’ A*
i l!"i"> ,\\ i
|l ?",
Earth’s atmosphere acts as a giant absorber for 9. mm |
cosmic rays T I S~
Charged particle '.-" e ¥ "[ Muon detectors |
X0 & 4;,, ~ 2000 x LAr , but, we have a lot of air! detectors

Atmospheric and ground-based detectors measure the shower, similar to calorimeters!
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And what to do with all these signals?
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First of all, record it

e |In the bubble-chamber era:
Photographic methods

e Quite precise but...

e \Very low rate ~ few HZ — can’t
operate in a modern collider!

 Automation of data analysis is hard
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e Today: Integrated electronics (ASICs)

* Allow us to go down to O(MHZz) rates

e \What we get: electronic signals,
usually digital

* A wide variety of circuits for position,
energy and time measurement

* Same requirements as the active
material (radiation hard, compact &
not too power consuming)

Input from
detector — 4
v Cec Ry
@ | F— —k
R A
P Output
f Amplifier _T.
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Then, process It...

* Technological breakthroughs in material and
electronics have improved signal yields and

detection times — we’re at the picosecond

eral

* At the same time, demand for precision is

Increasing

e Many experiments need to process TB of data

every second!

Bandwidth (MB/s)

* Traditionally, this has been handled by fast
electronics making decisions based on topical

signals - Triggers

e However, new strategies are now emerging:

e Software triggering based on
heterogeneous architectures (GPUs,

FPGAS)

* Machine-learning developments for
topological event reconstruction, faster

1750

1500

[
N
w
o

Total Disk[PB]

simulation and inclusive selections
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Putting everything together

ATLAS experiment @ CERN

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

GANIL @ Caen

y-ray spectrometer
Telescope array

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

. o _ high granularity silicon detector
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In the end

&

®

Event 52967
Run 191749

Tue, 23 May 2017 16:45:50

These images are thanks to the instruments, and you!
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Credits

* |. Wingerter's CERN summer school lectures
 EDIT 2020 Lectures on detectors
* Wikipedia

e And more...
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