Measurements of the CKM angle γ from $B^0 \to DK^+\pi^-$ decays with LHCb

Yuya Shimizu

Université Paris-Saclay, France

JRJC 24.10.2022

Laboratoire de Physique des 2 Infinis

- \blacktriangleright CKM angle γ
- Measuring γ with 2-body D final states (GLW, ADS)
- ▶ Use of 3-body decay of *D*, BPGGSZ method
- \blacktriangleright γ with two 3-body decays: B Dalitz and D Dalitz, Double Dalitz method
- Ongoing work at the LHCb

The Cabbibo-Kobayashi-Maskawa (CKM) matrix

CKM matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- It describes the mixing between the three generations of quarks in the Standard Model
- \triangleright V_{ij} corresponds to the transition amplitude from quark j to quark i.
- The CKM matrix is unitary and thus leads to the following relation:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

This equation can be graphically represented on the complex plane.

The angle γ of the unitarity triangle

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

The only CKM parameter which can be measured using a tree-level decay alone

- The theoretical uncertainty is very small: $\delta\gamma/\gamma\sim 10^{-7}~[1]$
- Precise measurement could give a hint to New Physics
- ► The latest value: $\gamma = (66.2^{+3.3}_{-3.5})^{\circ}$ (direct measurement with LHCb [2]) $\gamma = (65.5^{+1.1}_{-2.7})^{\circ}$ (from other constraints)

- A typical channel to measure γ is $B^{\pm} \to DK^{\pm}$, where D can be either D^0 or \overline{D}^0
- ▶ The final state f should be accessible from both D^0 and \overline{D}^0
- ▶ Interference between $b \rightarrow cus$ and $b \rightarrow ucs$

Feynman diagrams of the favoured and suppressed decays

- Favoured $b \rightarrow c$ and suppressed $b \rightarrow u$
- ▶ Note $V_{cb} \sim 10V_{ub}$
- Suppressed even further by the colour suppression

- ▶ Consider D final states which are CP eigenstates such as $D \to \pi^+\pi^-$ or $D \to K^+K^-$ [3][4]
- \blacktriangleright The CP asymmetry can be defined as the decay rate between B^+ and B^-

Amplitude to the final state f_{CP}

$$A_{B^{\pm}} = |F|e^{i(\delta_F \pm \phi_F)} + |S|e^{i(\delta_S \pm \phi_S)}$$

$$\begin{aligned} \mathcal{A}_{CP} &= \frac{|A_{B^-}|^2 - |A_{B^+}|^2}{|A_{B^-}|^2 + |A_{B^+}|^2} \\ &= \frac{2|F||S|\sin(\delta_F - \delta_S)\sin(\phi_F - \phi_S)}{|F|^2 + |S|^2 + 2|F||S|\cos(\delta_F - \delta_S)\cos(\phi_F - \phi_S)} \\ &= \frac{\pm 2r_B\sin\delta_B\sin\gamma}{1 + r_B^2 + 2r_B\cos\delta_B\cos\gamma} \end{aligned}$$

- $r_B = |S|/|F|$: ratio between favoured and suppressed
- $\delta_B = \delta_F \delta_S$: strong phase difference
- $\gamma = \phi_F \phi_S$: weak phase difference

GLW with LHCb

- Analysis with $D \to K^+ K^-$ and $D \to \pi^+ \pi^-$ [5]
- CP violation can be clearly seen

$$\begin{split} \mathcal{A}_{CP}^{KK} &= \frac{\Gamma(B^- \to [K^+K^-]_D K^-) - \Gamma(B^+ \to [K^+K^-]_D K^+)}{\Gamma(B^- \to [K^+K^-]_D K^-) + \Gamma(B^+ \to [K^+K^-]_D K^+)} \\ &= 0.136 \pm 0.009 \pm 0.001 \end{split}$$

- ▶ 2-body final state such as $D \to K^{\pm}\pi^{\mp}$, $D \to \pi^{\pm}K^{\mp}$ [6][7]
 - Cabibbo Favoured (CF): $D^0 \to K^+ \pi^-$
 - Doubly Cabibbo Suppressed (DCS): $\overline{D}{}^0 \to K^+ \pi^-$
- CP asymmetry can be written as

$$\mathcal{A}_{ADS} = \frac{2r_D r_B \sin \delta_B + \delta_D \sin \gamma}{r_D^2 + r_B^2 + 2r_B r_D \cos \left(\delta_B + \delta_D\right) \cos \gamma}$$

- r_D : ratio of magnitudes for D^0 and \overline{D}^0 decay to f
- δ_D : phase difference for D^0 and $\overline{D}{}^0$ decay to f
- $\bullet\,$ can retrieve the expression for GLW with $r_D=1$ and $\delta_D=0$

ADS with LHCb

▶ Larger CP violation has been observed for $B^- \rightarrow [K^+\pi^-]_D K^-$ [5]

• interference between (fav. B and sup. D) and (sup. B and fav. D)

$$\mathcal{A}_{ADS}^{\pi K} = \frac{\Gamma(B^- \to [K^+\pi^-]_D K^-) - \Gamma(B^+ \to [K^-\pi^+]_D K^+)}{\Gamma(B^- \to [K^+]_D K^-) + \Gamma(B^+ \to [K^-\pi^+]_D K^+)}$$

 $= -0.451 \pm 0.026$

Self-conjugated 3-body decay of D (BPGGSZ method)

- 3-body decay of D can be used [8] [9]
- For example, $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K^0_S \pi^+ \pi^-$
- The sensitivity to γ is enhanced thanks to the resonances in $D \to K_{\rm S}^0 \pi^+ \pi^-$
 - Cabibbo suppressed $D \to K^0_{
 m S} \rho$
 - Doubly Cabibbo suppressed $D \to K^{*+} \pi^-$

Self-conjugated 3-body decay of D (BPGGSZ method)

▶ The amplitude of $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K^0_S \pi^+ \pi^-$ can be written as

 $A \propto \overline{A}_D + r_B e^{i(\delta_B + \gamma)} A_D$

- r_B: ratio of the suppressed to the favoured decays
- ▶ δ_B : strong phase difference between the suppressed and favoured decays
- ▶ δ_D : strong phase difference between D^0 $(\overline{D}^0) \to f$

Partial width as a function of the position on the Dalitz plane

$$d\Gamma_{B^{\pm} \to DK^{\pm}}(x) = \overline{A}_{D}^{2} + r_{B}A_{D}^{2} + 2\overline{A}_{D}A_{D}[r_{B}\cos(\delta_{B} \pm \gamma)\cos\delta_{D} + r_{B}\sin(\delta_{B} \pm \gamma)\sin\delta_{D}]$$

Binned D Dalitz

- Binned D Dalitz method is model-independent
- Binning scheme is chosen to maximise sensitivity to γ [10]
- Run 1+2 analysis has measured γ = (68.7^{+5.2}_{-5.1})°, which is the most precise measurement of γ from a single analysis [11]

Number of events in bin i

$$\begin{split} N^+_{\pm i} &= h_{B^+}[K_{\mp i} + (x_+^2 + y_+^2)K_{\pm i} + 2\sqrt{K_iK_{-i}}(x_+c_{\pm i} - y_+s_{\pm i})]\\ N^-_{\pm i} &= h_{B^-}[K_{\pm i} + (x_-^2 + y_-^2)K_{\mp i} + 2\sqrt{K_iK_{-i}}(x_-c_{\pm i} - y_-s_{\pm i})] \end{split}$$

$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

- h_{B±}: normalisation factor,
- ► $K_{+(-)i}$: fraction of D^0 $(\overline{D}^0) \to f$ in bin *i*, estimated using $B^{\pm} \to D\pi^{\pm}$ control mode
- $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$
- ▶ $c_{\pm i}, s_{\pm i}$: sine and cosine of the strong phase difference between D^0 $(\overline{D}^0) \rightarrow f$, taken from CLEO and BESIII

Yuya Shimizu

Measuring γ with $B^0 \rightarrow DK^+\pi^-$

- ▶ We can include the entire phase space of $B^0 \rightarrow DK^+\pi^-$
- Having different resonances can give additional sensitivity to γ
 - $B^0 \to DK_0^*(1430)^0$
 - $B^0 \to DK_2^*(1430)^0$
 - $B^0 \to D_2^* (2460)^- K^+$
- Simultaneously use B Dalitz and D Dalitz \rightarrow Double Dalitz [12] [13]

▶ The amplitude of $B^0 \to DK^+\pi^-$, $D \to K^0_S \pi^+\pi^-$ can be written as

$$A \propto \overline{A}_B \overline{A}_D + e^{i\gamma} A_B A_D$$

►
$$A_B(\overline{A}_B)$$
: amplitude of $B^0 \to D^0(\overline{D}^0)K^+\pi^-$
► $A_D(\overline{A}_D)$: amplitude of $D^0(\overline{D}^0) \to f$

Partial width as a function of the position on the Double Dalitz plane

$$d\Gamma_{B^0 \to DK^+\pi^-}(x) = \overline{A}_B^2 \overline{A}_D^2 + A_B^2 A_D^2 + 2\overline{A}_B \overline{A}_D A_B A_D$$
$$[(\cos \delta_B \cos \delta_D - \sin \delta_B \sin \delta_D) \cos \gamma - (\cos \delta_B \sin \delta_D - \sin \delta_B \cos \delta_D) \sin \gamma]$$

Number of events in each bin for $B^0 \to DK^+\pi^-$ (for $\overline{B}^0 \gamma \to -\gamma$) $N_{\alpha i} = h \left\{ \bar{\kappa}_{\alpha} K_{-i} + \kappa_{\alpha} K_{+i} + 2\sqrt{\kappa_{\alpha} K_{+i} \bar{\kappa}_{\alpha} K_{-i}} \left[(\chi_{\alpha} c_i - \sigma_{\alpha} s_i) \cos \gamma - (\chi_{\alpha} s_i + \sigma_{\alpha} c_i) \sin \gamma \right] \right\}$ (1)

- α for B Dalitz bin, i for D Dalitz bin
- κ_{α} ($\bar{\kappa}_{\alpha}$) fraction of $B^0 \to D^0(\overline{D}^0)K^+\pi^-$ in each bin α
- ▶ χ_{α} , σ_{α} cosine and sine of strong phase difference between $B^0 \to D^0(\overline{D}^0)K^+\pi^-$ in each bin α

•
$$K_{+(-)i}$$
 fraction of D^0 $(\overline{D}^0) \to f$ in bin i

- c_i, s_i cosine and sine of strong phase difference between D^0 (\overline{D}^0) $\rightarrow f$
- h overall normalisation factor
- $\blacktriangleright \kappa_{\alpha}, \bar{\kappa}_{\alpha}, \chi_{\alpha}, \sigma_{\alpha}$ are shared across all decay modes and float in the fit
 - · additional decay modes improve precision to these parameters

Binned Double Dalitz

- The binning scheme is based on B^0 and D Dalitz planes from [13], [10]
- A single three-body B(D) decay results in 2×5 (2×8) bins.
- A Double Dalitz decay results in $2 \times 5 \times 16 = 160$ bins
- For 160 observables we have 23 free parameters
- ▶ $B^0 \rightarrow (D \rightarrow K^0_S K^+ K^-) K^+ \pi^-$ can also be used with a suitable D Dalitz binning

- ▶ We could add other decays in addition to 3-body D final states
- ► $D \rightarrow K^+ \pi^-$
 - $\bullet\,$ the favoured control mode with low sensitivity to $\gamma\,$
 - but a high statistics provides sensitivity to the B phase space parameters
 - it adds 10 observables:

$$N_{\alpha} = h \left\{ \bar{\kappa}_{\alpha} + r_D^2 \kappa_{\alpha} + 2\sqrt{\kappa_{\alpha} \bar{\kappa}_{\alpha}} \left[(\chi_{\alpha} \cos(\gamma - \delta_D) - \sigma_{\alpha} \sin(\gamma - \delta_D)) \right] \right\}$$

► $D \rightarrow K^- \pi^+$

- less sensitive compared to $B^+ \to DK^+$ because r_B is larger
- ${\ensuremath{\,\circ\,}}$ also have to manage the $B^0_s \to D^{(*)} K^- \pi^+$ background

 $\blacktriangleright D \to K^+K^-, \pi^+\pi^-$

- $\blacktriangleright \ D \to \pi^+\pi^-\pi^+\pi^-, K^+\pi^-\pi^+\pi^-, K^-\pi^+\pi^+\pi^-$
 - for $K3\pi$ modes binning can be used [15]
- ▶ In principle, we could add more (e.g. $D \rightarrow h^+h^-\pi^0$)

- First we need to remove background
 - Trigger and stripping requirement
 - · Boosted Decision Tree to remove combinatorial background
 - Particle identification requirement particularly against $B^0 \rightarrow D\pi^+\pi^-$
 - and so on
- \blacktriangleright We fit the B^0 invariant mass globally rather than fit for each of 160 bins
- ▶ To get $N_{\alpha,i}$, we need to subtract the number of background
- For partially reconstructed background or mis-ID background we can use Laura++ and ongoing $B^0 \rightarrow D^*K^+\pi^-$, $B^0_s \rightarrow D^*K^-\pi^+$ analysis to get the distribution in Dalitz space
- Then finally obtain the value of γ using 1

- BDT with XGBoost to suppress combinatorials [16]
- ▶ The k-fold cross BDT method with k = 4 is exploited
- It allows us to use events in the fitting region for training a BDT
- We apply PID cuts on the companion particles before the training

Training/Testing Samples

Training/Testing sample comparison

- Good agreement between the training and testing samples
- No significant overtraining
- Good separation between signal and background

$$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$$
 DD Run1

 $D \to K^0_{\rm S} \pi^+ \pi^-$ DD Run 2

Mass fit

- \blacktriangleright We perform an unbinned fit to the mass distribution of B^0 and $\overline{B}{}^0$
- The fit is done globally (per bin) to avoid too few entries
- Need to model quite a few categories of background
- The signal peak can be clearly seen

Number of events in bin (α, i)

$$\mu_{\alpha,i} = N_{\alpha,i} + \sum_{b \in \mathcal{B}} f^b_{\alpha,i} y_b,$$

- ▶ Raw number of events in each bin $\mu_{\alpha,i}$ contains background
- Need a background distribution model to estimate the yields in each bin
 - $\bullet~{\rm The~result~from}~B^0\to D^*K^+\pi^-$, $B^0_s\to D^*K^-\pi^+$ analysis [17] are used as input
 - Laura++ [18] is used for the other modes to obtain the model
- \blacktriangleright Then the population equations can be fitted to obtain γ

▶ Double Dalitz method with $B^0 \to DK^+\pi^-$, $D \to K^0_S h^+h^-$ is a promising way to measure γ

▶ Including decays as $D \rightarrow h^+h^-$ or $D \rightarrow h^+h^-h^+h^-$ further improves sensitivity to γ

- ▶ The analysis is still ongoing with LHCb and getting closer to the end
- ▶ This analysis alone aims to achieve $\sigma(\gamma) \sim 5^{\circ}$ with Run 1+2 data

References I

J. Zupan J. Brod.

The ultimate theoretical error on γ from $B^0 \rightarrow DK$ decays. Journal of High Energy Physics, 51, 2014.

[2] The LHCb Collaboration.

Simultaneous determination of the CKM angle γ and parameters related to mixing and CP violation in the charm sector. (LHCb-CONF-2022-002), 2022.

[3] D. London M. Gronau.

How to determine all the angles of the unitarity triangle from $B^0 \to DK^0_S$ and $B^0_s \to D\phi.$ Phys. Lett. B, 265:483, 1991.

[4] D. Wyler M. Gronau.

On determining a weak phase from charged B decay asymmetries. *Phys. Lett. B*, 265:172, 1991.

[5] R. Aaij et al.

Measurement of CP observables in $B^{\pm} \rightarrow D^{(*)}K^{\pm}$ and $B^{\pm} \rightarrow D^{(*)}\pi^{\pm}$ decays using two-body D final states. 2020. in proparation.

[6] A. Soni D. Atwood, I. Dunietx.

Enhanced CP Violation with $B \to KD^0(\overline{D}^0)$ Modes and Extraction of the Cabibbo-Kobayashi-Maskawa Angle γ . *Phys. Rev. Lett.*, 78:3257, 1997.

[7] A. Soni D. Atwood, I. Dunietx.

Improved methods for observing CP violation in $B^{\pm} \rightarrow KD$ and measuring the CKM phase γ . *Phys. Rev. D*, 63:036005, 2001.

- [8] A. Soffer A. Giri, Y. Grossman and J. Zupan. Determining γ using B[±] → DK[±] with multibody D decays. Phys. Rev. D, 68:054018, 2003.
- [9] A. Bonder.

Proceedings of BINP special analysis meeting on Dalitz analysis. 24-26 Sep. 2002, unpublished.

References II

[10] J. Libby et al.

Model-independent determination of the strong-phase difference between D^0 and $\bar{D}^0 \rightarrow K^0_{S,L}h^+h^ (h = \pi, K)$ and its impact on the measurement of the CKM angle γ/ϕ_3 . *Phys. Rev. D*, 82:112006, 2010.

[11] R. Aaij et al.

Measurement of the CKM angle γ in $B^\pm \to DK^\pm$ and $B^\pm \to D\pi^\pm$ decays with $D \to K^0_{\rm S} h^+ h^-$. JHEP, 02:169, arXiv:2010.08483, 2021.

[12] T. Gershon and A. Poluektov.

Double Dalitz Plot Analysis of the Decay $B^0\to DK^+\pi^-$, $D\to K^0_S\pi^+\pi^-$. Phys. Rev. D, 81:014025, 2010.

[13] D. Craik, T. Gershon, and A. Poluektov.

Optimising sensitivity to γ with $B^0 \rightarrow DK^+\pi^-$, $D \rightarrow K^0_S \pi^+\pi^-$ double Dalitz plot analysis. Phys. Rev. D, 97(5):056002, 2018.

[14] R. Aaij et al.

Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \rightarrow DK^+\pi^-$ decays. *Phys. Rev. D*, 93(11):112018, 2016. [Erratum: Phys.Rev.D 94, 079902 (2016)].

[15] T. Evans, J. Libby, S. Malde, and G. Wilkinson.

Improved sensitivity to the CKM phase γ through binning phase space in $B^- \rightarrow DK^-$, $D \rightarrow K^+\pi^-\pi^-\pi^+$ decays. *Phys. Lett. B*, 802:135188, 2020.

[16] Tianqi Chen and Carlos Guestrin.

XGBoost: A Scalable Tree Boosting System.

KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785-794, 2016.

[17] R. Aaij et al.

Observation of the $B^0 \rightarrow \overline{D}^{*0}K^+\pi^-$ and $B^0_s \rightarrow \overline{D}^{*0}K^-\pi^+$ decays. *Phys. Rev.*, D105:072005, 2022.

[18] T. Latham. The Laura++ Dalitz plot fitter. 2016.

[19] R. Aaij et al.

Model-independent measurement of the CKM angle γ using $B^0 \rightarrow DK^{*0}$ decays with $D \rightarrow K_S^0 \pi^+ \pi^-$ and $K_S^0 K^+ K^-$. JHEP, 10:131, arXiv:1604.01525, 2016.

[20] R. Aaij et al.

Measurement of the CKM angle γ in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ decays with $D \rightarrow K_{\rm S}h^+h^-$. 2020. submitted to JHEP.

[21] M. Ablikim et al.

Model-independent determination of the relative strong-phase difference between D^0 and $\bar{D}^0 \rightarrow K^0_{S,L} \pi^+ \pi^-$ and its impact on the measurement of the CKM angle γ/ϕ_3 . *Phys. Rev. D*, 101(11):112002, 2020.

[22] M. Ablikim et al.

Improved model-independent determination of the strong-phase difference between D^0 and $\bar{D}^0 \rightarrow K^0_{S,L}K^+K^-$ decays. *Phys. Rev. D*, 102(5):052008, 2020.

BACK UP

- The branching fraction is small ($\sim 5 \times 10^{-5}$)
- However, $r_B \sim 0.3$ which provides larger interference than $B^{\pm} \rightarrow DK^{\pm}$ (~ 0.1)
- Model-independent BPGGSZ analysis has been done for Run 1 [19]
- Run 1+2 analysis is ongoing

Expected number of events in each bin (α for B bin, i for D bin) for $B^0 \to DK^+\pi^-$ (to get \overline{B}^0 then $\gamma \to -\gamma$)

$$N_{\alpha i} = h \left\{ \bar{\kappa}_{\alpha} K_{+i} + \kappa_{\alpha} K_{-i} + 2\kappa_D \sqrt{\kappa_{\alpha} K_{+i} \bar{\kappa}_{\alpha} K_{-i}} \left[(\chi_{\alpha} c_i - \sigma_{\alpha} s_i) \cos \gamma - (\chi_{\alpha} s_i + \sigma_{\alpha} c_i \sin \gamma) \right] \right\}$$

Decay	Parameters	Observables
$D \rightarrow K_s^0 \pi^+ \pi^-$	$K_{\pm i}$ from $B^+ \to Dh^+$ BPGGSZ[20]	160
	c_i , s_i from CLEO+BES-III[21], $\kappa_D = 1$	
$D \rightarrow K_s^0 K^+ K^-$	$K_{\pm i}$ from $B^+ \rightarrow Dh^+$ BPGGSZ[20]	40
	c_i , s_i from CLEO+BES-III[22], $\kappa_D = 1$	
$D \rightarrow K^+ \pi^-$	$K_{+i} = 1, \ K_{-i} = r_D^2, \ c_i, s_i = \cos, \sin(-\delta_D), \ \kappa_D = 1$	10
$D \rightarrow K^- \pi^+$	$K_{+i} = r_D^2, K_{-i} = 1, c_i, s_i = \cos, \sin(\delta_D), \kappa_D = 1$	10
$D \rightarrow h^+ h^-$	$K_{+i} = 1, K_{-i} = 1, c_i = 1, s_i = 0, \kappa_D = 1$	10
$D \to K^+ \pi^- \pi^0$	$K_{+i} = 1, \ K_{-i} = r_D^2, \ c_i, s_i = \cos, \sin(-\delta_D), \ \kappa_D$	10
$D \rightarrow K^- \pi^+ \pi^0$	$K_{+i} = r_D^2, \kappa_D, K_{-i} = 1, c_i, s_i = \cos, \sin(\delta_D), \kappa_D$	10
$D \rightarrow h^+ h^- \pi^0$	$K_{+i} = 1, K_{-i} = 1, c_i = 1, s_i = 0, \kappa_D = (2F^+ - 1)$	10
$D \rightarrow K^- \pi^+ \pi^+ \pi^-$	$K_{\pm i}$ from $B^+ \to Dh^+$ BPGGSZ	80
	c_i , s_i from CLEO+BES-III, $\kappa_D = 1$	
$D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	$K_{+i} = 1, K_{-i} = 1, c_i = 1, s_i = 0, \kappa_D = (2F^+ - 1)$	10

Optimising the BDT cut

- We optimise the BDT cut by maximising the figure of merit $S/\sqrt{S+B}$, where S and B are the sum of signal and background around B^0 mass for both Runs
- \blacktriangleright The initial values of S and B are extracted from a simplified B^0 mass fit
- The FOM is then evaluated at each working point from the efficiency
- We set the cut at 0.85 for both Runs

- Signal: truth-matched MC 11, 12, 15, 16, 17, 18 (proportional to the luminosity)
- ▶ Background: Run 1 and Run 2 data, $m_{B^0} > 5.5$ GeV
- The samples are treated separately for Run 1 and Run 2
- We split the D decay modes into categories of topology rather than training a BDT for each mode
- BDTs for each of the following categories and for each Run:

1 KsHH LL with
$$D \to K^0_S \pi^+ \pi^-$$
 LL

- 2 KsHH DD with $D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$ DD
- 3 HH with $D \to K^+ K^-$
- 4 HHHH with $D \rightarrow \pi^+ \pi^- \pi^+ \pi^-$
 - Last two are for additional decay modes

We checked using different BDTs for each D final state does not improve performance

Combination of LHCb measurements

LHCb-CONF-2022-003

• $\gamma = (63.8^{+3.5}_{-3.7})^{\circ}, \ x_D = (0.398^{+0.050}_{-0.049})\%, \ y_D = (0.636^{+0.020}_{-0.019})\%$

* Improvements about 10% on γ (\sim 1 year data-taking), 6% on x_D and 38% on y_D

- $\gamma_{\text{UTFit}} = (65.8 \pm 2.2)^{\circ}$, $\gamma_{\text{CKMFitter}} = (65.5^{+1.1}_{-2.7})^{\circ}$
- Tension between different B categories remains (~ 2σ)

11/27