Image of Nantes, Not from Saint-Jean-de-Monts

# Measurement of the Higgs STXS and couplings using diphoton channel with ATLAS full Run 2 data

submitted to JHEP https://arxiv.org/abs/2207.00348v1

Oleksii Lukianchuk











Higgs Combination

2

### Introduction

Introduction

Analysis

EFT interpretation

# Higgs physics

- Scalar boson discovered in 2012 (ATLAS+CMS), compatible with SM Higgs prediction Phys. Lett. B716 (2012) 1-29 Phys. Lett. B 716 (2012) 30
- Coupling to particles depends only on their mass
- Any new particle will modify Higgs production and decay rates



### $H \longrightarrow \gamma \gamma$ channel

- Small branching ratio  $\mathcal{B}$  (0.228%)
- Clean signature and smooth background





• Current precision on the cross-section O(10%): (full Run2 data:  $139 fb^{-1}$ )

$$\left(\sigma \times \mathcal{B}_{\gamma\gamma}\right)_{obs} = 121^{+10}_{-9} \ fb = 121 \pm 7(stat.) \ ^{+7}_{-6}(syst.) \ fb,$$

Introduction

6

Measure production cross-sections in kinematic regions (truth bins): production mode, momentum, #jets, ...



6

Measure production cross-sections in kinematic regions (truth bins):

production mode, momentum, #jets, ...

Advantage:

• No dependency on the final state



6

Measure production cross-sections in kinematic regions (truth bins):

production mode, momentum, #jets, ...

Advantage:

- No dependency on the final state
- No extrapolation to full phase-space (acceptance, kinematical cuts)



6

Measure production cross-sections in kinematic regions (truth bins):

production mode, momentum, #jets, ...

Advantage:

- No dependency on the final state
- No extrapolation to full phase-space (acceptance, kinematical cuts)
- Easy to combine (no final state dependency)



6

Measure production cross-sections in kinematic regions (truth bins):

production mode, momentum, #jets, ...

### Advantage:

- No dependency on the final state
- No extrapolation to full phase-space (acceptance, kinematical cuts)
- Easy to combine (no final state dependency)
- Reduced theoretical uncertainty (no dependency on predictions)



Analysis

Measure production cross-sections in kinematic regions (truth bins):

production mode, momentum, #jets, ...

Advantage:

• No dependency on the final state

Introduction

- No extrapolation to full phase-space (acceptance, kinematical cuts)
- Easy to combine (no final state dependency)
- Reduced theoretical uncertainty (no dependency on predictions)
- Enhanced sensitivity to BSM regions (splitting high- and low-pT regions)

Do not include Higgs final state in the description Use kinematics of other particles



EFT interpretation

### Truth bins in STXS stage 1.2 (merged)



# Analysis

Introduction

Analysis

EFT interpretation

### Photon reconstruction

• Reconstruct two photons: energy deposit in EM calorimeter.

#### Introduction

Analysis

#### EFT interpretation

### Photon reconstruction

• Reconstruct two photons: energy deposit in EM calorimeter.





 Jets can mimic photons: exploit granularity to reject & shower-shape variables



### Photon reconstruction

• Reconstruct two photons: energy deposit in EM calorimeter.





 Jets can mimic photons: exploit granularity to reject & shower-shape variables

#### Selection for photons:

$$\begin{split} &|\eta| < 2.37, \text{ excluding } |\eta| \in [1.37, 1.52] \\ &\frac{E_T^{1(2)}}{m_{\gamma\gamma}} > 0.35 \ (0.25) \ + \text{tight } \text{ID \& isolation} \end{split}$$

Efficiency: 84% at pT = 25 GeV 94% at pT = 100 GeV

#### 9

Introduction

Analysis

### $m_{\gamma\gamma}$ spectrum



Introduction

Analysis

EFT interpretation

Statistical model Extended term: fluctuation in the number of events
$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta})\right) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j})$$

Analysis

Introduction

11

Statistical model Extended term: fluctuation in the number of events  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta}) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j})$$

Introduction

Analysis

EFT interpretation

Statistical model Extended term: fluctuation in the number of events  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta}) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j})$$

$$f_c(\boldsymbol{m_{\gamma\gamma}}^i|\vec{\theta}) = \frac{1}{\nu_c} \left\{ \left[ \boldsymbol{s_c}\left(\vec{\mu}, \vec{\theta}\right) + N^c_{sp} \vec{\theta}^c_{sp} \right] \mathrm{Pdf}^c_{sig}\left(\boldsymbol{m_{\gamma\gamma}}|\vec{\theta}_{sp}\right) + \boldsymbol{b_c} \mathrm{Pdf}^c_{bkg}(\boldsymbol{m_{\gamma\gamma}}|\vec{\theta}_{bkg}) \right\}$$

Introduction

Analysis

EFT interpretation

Statistical model Extended term: fluctuation in the number of events  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta}) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j})$$

$$f_{c}(\boldsymbol{m_{\gamma\gamma}}^{i}|\vec{\theta}) = \frac{1}{\nu_{c}} \left\{ \begin{bmatrix} \boldsymbol{s}_{c}(\vec{\mu},\vec{\theta}) + N_{sp}^{c}\vec{\theta}_{sp}^{c} \end{bmatrix} \operatorname{Pdf}_{sig}^{c}(\boldsymbol{m_{\gamma\gamma}}|\vec{\theta}_{sp}) + \boldsymbol{b}_{c}\operatorname{Pdf}_{bkg}^{c}(\boldsymbol{m_{\gamma\gamma}}|\vec{\theta}_{bkg}) \right\}$$
  
Fitted signal  
$$\nu_{c} = \boldsymbol{s}_{c} + N_{sp}^{c} + \boldsymbol{b}_{c}$$
$$\boldsymbol{s}_{c} = \sum \boldsymbol{\sigma}_{t} \mathcal{A}_{ct} \boldsymbol{\varepsilon}_{ct} \mathcal{L}$$

$$\mathbf{f}_{c} = \sum_{c} \sigma_{t} \mathcal{A}_{ct} \varepsilon_{ct} \mathcal{L}$$
Luminosity
Efficiency
Acceptance
Cross-section of truth-bin

Statistical model Extended term: fluctuation in the number of events  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta})\right) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j})$$

Introduction

$$f_{c}(\boldsymbol{m_{\gamma\gamma}}^{i}|\vec{\theta}) = \frac{1}{\nu_{c}} \left\{ \begin{bmatrix} \boldsymbol{s}_{c}(\vec{\mu},\vec{\theta}) + N_{sp}^{c}\vec{\theta}_{sp}^{c} \end{bmatrix} \operatorname{Pdf}_{sig}^{c}(\boldsymbol{m_{\gamma\gamma}}|\vec{\theta}_{sp}) + \boldsymbol{b}_{c}\operatorname{Pdf}_{bkg}^{c}(\boldsymbol{m_{\gamma\gamma}}|\vec{\theta}_{bkg}) \right\}$$
spurious signal
$$\nu_{c} = \boldsymbol{s}_{c} + N_{sp}^{c} + \boldsymbol{b}_{c}$$

$$\boldsymbol{s}_{c} = \sum_{c} \sigma_{t}\mathcal{A}_{ct}\varepsilon_{ct}\mathcal{L}$$

$$\int_{c} \operatorname{Luminosity}_{c} \operatorname{Efficiency}_{c} \mathcal{L}$$

$$\int_{c} \operatorname{Luminosity}_{c} \operatorname{Luminosity}_{c} \mathcal{L}$$

Analysis

EFT interpretation

Statistical model Extended term: fluctuation in the number of events  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta})\right) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j})$$

Introduction

Analysis

EFT interpretation

Statistical model  
Extended term: fluctuation in the number of events  
Diphoton mass Pdf  
Constrains on systematics  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta}) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j}) \right)$$
Nuisance parameters

Introduction

$$f_{c}(m_{\gamma\gamma}{}^{i}|\vec{\theta}) = \frac{1}{\nu_{c}} \left\{ \begin{bmatrix} s_{c}(\vec{\mu},\vec{\theta}) + N_{sp}^{c}\vec{\theta}_{sp}^{c} \end{bmatrix} \operatorname{Pdf}_{sig}^{c}(m_{\gamma\gamma}|\vec{\theta}_{sp}) + \underbrace{b_{c}}\operatorname{Pdf}_{bkg}^{c}(m_{\gamma\gamma}|\vec{\theta}_{bkg}) \right\}$$
  
Fitted signal  

$$\nu_{c} = s_{c} + N_{sp}^{c} + b_{c}$$
  

$$s_{c} = \sum_{c} \sigma_{t}\mathcal{A}_{ct}\varepsilon_{ct}\mathcal{L}$$
  

$$\int_{c} \operatorname{Luminosity}_{c} \operatorname{Luminosity}_{c} \operatorname{Luminosity}_{c}$$

Analysis

EFT interpretation

Statistical model  
Extended term: fluctuation in the number of events  
Diphoton mass Pdf  
Constrains on systematics  

$$\mathcal{L}\left(\vec{\mu}, \vec{\theta} | m_{\gamma\gamma}\right) = \prod_{c} \operatorname{Pois}\left(n_{c} | \nu_{c}(\vec{\mu}, \vec{\theta}) \prod_{i} f_{c}(m_{\gamma\gamma}^{i} | \vec{\theta}) \times \prod_{j} G(\theta_{j}) \right)$$
Nuisance parameters

$$f_{c}(m_{\gamma\gamma}{}^{i}|\vec{\theta}) = \frac{1}{\nu_{c}} \left\{ \begin{bmatrix} s_{c}(\vec{\mu},\vec{\theta}) + N_{sp}^{c}\vec{\theta}_{sp}^{c} \end{bmatrix} \operatorname{Pdf}_{sig}^{c}(m_{\gamma\gamma}|\vec{\theta}_{sp}) + \underbrace{b_{c}}\operatorname{Pdf}_{bkg}^{c}(m_{\gamma\gamma}|\vec{\theta}_{bkg}) \right\}$$
  
Fitted bkg  

$$Fitted signal$$

$$\nu_{c} = s_{c} + N_{sp}^{c} + b_{c}$$

$$s_{c} = \sum_{c} \sigma_{t} \mathcal{A}_{ct} \varepsilon_{ct} \mathcal{L}$$

$$\int \operatorname{Luminosity}_{c} = S_{c} + N_{sp}^{c} + b_{c}$$

$$Simultaneous \text{ fit of 101 categories, targeting 28 truth bins}$$

$$\sim 300 \text{ parameters}$$

→ Cross-section of truth-bin

11

Introduction

~400 systematics

Analysis

### STXS measurement

#### STXS Purity plot Categories are merged only for visualisation

#### **101 categories** targeting **28 truth bins**

Categorisation:

- Multiclass BDT to assign events to the targeted truth bins
- **Binary BDT** to separate signal from bkg

Pairing: **Reconstructed** category <=> **truth** bin





Introduction

Analysis

#### **EFT** interpretation

12

Purity

### Signal shape modelling

From MC simulation

1/N dN/d $m_{\gamma\gamma}$  / 0.5 GeV **Double-Sided Crystal Ball** function: Gaussian core + asymmetric polynomial tails

Unbinned Likelihood fit, fixed range: 113-138 GeV

**Independently** for each of the 101 categories



 $m_{\gamma\gamma}$  [GeV]

13

#### Introduction



### Directly estimated from data with ABCD method

Introduction

Analysis



Background: yy + yj + jj.

• Jets Bkg modelling is complex and computationally expensive:

#### Directly estimated from data with ABCD method

Introduction

Analysis

EFT interpretation



**Functional form** (exp, Bernstein, polynomial) is **chosen by Spurious** signal test or Wald test (low-stat categories):



Introduction

Analysis

**Functional form** (exp, Bernstein, polynomial) is **chosen by Spurious** signal test or Wald test (low-stat categories): Try a series of fits:

- bkg-only MC with (bkg + sig) pdf
- Signal at various positions (123-127 GeV) with 0.5 GeV step



Introduction

**Functional form** (exp, Bernstein, polynomial) is **chosen by Spurious** signal test or Wald test (low-stat categories): Try a series of fits:

- bkg-only MC with (bkg + sig) pdf
- Signal at various positions (123-127 GeV) with 0.5 GeV step



**Functional form** (exp, Bernstein, polynomial) is **chosen by Spurious** signal test or Wald test (low-stat categories): Try a series of fits:

- bkg-only MC with (bkg + sig) pdf
- Signal at various positions (123-127 GeV) with 0.5 GeV step
- Take the one with the lowest # params passing criteria: N\_sp < 10% expected signal N\_sp < 20% expected error on bkg (for Asimov dataset)</li>



**Functional form** (exp, Bernstein, polynomial) is **chosen by Spurious** signal test or Wald test (low-stat categories): Try a series of fits:

- bkg-only MC with (bkg + sig) pdf
- Signal at various positions (123-127 GeV) with 0.5 GeV step
- Take the one with the lowest # params passing criteria: N\_sp < 10% expected signal</li>
   N\_sp < 20% expected error on bkg (for Asimov dataset)</li>



### Results: signal strengths Inclusive $\sigma^{\gamma\gamma}/\sigma^{\gamma\gamma}_{SM} = 1.045 \,{}^{+0.084}_{-0.080} = 1.04 \,{}^{+0.060}_{-0.059} \,(\text{stat.}) \,{}^{+0.059}_{-0.054} \,(\text{syst.})$

### No significant deviations wrt SM

Introduction

Analysis

**EFT** interpretation


EFT interpretation



### Results: Kappa-framework

Likelihood scans of the effective couplings (probing amplitudes):

 $\mathbf{X}$ ATLAS SM \_√s = 13 TeV, 139 fb¹ **Observed best fit** 1.3 Observed 68 % CL  $H \rightarrow \gamma \gamma$ **Observed 95 % CL** 1.2 1. 0.9 0.8<sup>1</sup> 0.8 0.9 .2 .3 κ<sub>g</sub>

Higgs-gluons vs Higgs-photons

Higgs-fermions vs Higgs-vector bosons

17



Introduction

Analysis

EFT interpretation

# EFT interpretation

Introduction

Analysis

EFT interpretation

# EFT interpretation: SMEFT (Standard Model Effective Field Theory)



Introduction

EFT impact on the cross-section of the truth bin t, decaying into final state f

Analysis

20

EFT interpretation

 $\sigma^{t,f} = \sigma^{t,f}_{SM} + \sigma^{t,f}_{int} + \sigma^{t,f}_{BSM}$ 

EFT impact on the cross-section of the truth bin t, decaying into final state f

$$\sigma^{t,f} = \sigma^{t,f}_{SM} + \sigma^{t,f}_{int} + \sigma^{t,f}_{BSM}$$
Pure SM cross-section

Introduction

EFT impact on the cross-section of the truth bin t, decaying into final state f



EFT impact on the cross-section of the truth bin t, decaying into final state f



Introduction

EFT impact on the cross-section of the truth bin t, decaying into final state f



Introduction

EFT interpretation

EFT impact on the cross-section of the truth bin t, decaying into final state f



EFT impact on the cross-section of the truth bin t, decaying into final state f



EFT impact on the cross-section of the truth bin t, decaying into final state f



EFT interpretation

### EFT: Method

Introduction

EFT impact on the cross-section of the truth bin t, decaying into final state f



Analysis

EFT interpretation

### EFT: Method

Introduction

EFT impact on the cross-section of the truth bin t, decaying into final state f



Analysis



# EFT interpretation: results, individual Ci

Measured values and 68% (95%) CI for the linear only and linear + quadratic parametrisations One-at-time scan: float only one WC, others set to zero (SM value)



# EFT interpretation: PCA definition

Try to perform measurements of the most sensitive directions (PCA)

#### **ATLAS** √s=13 TeV 139fb<sup>-1</sup>; H→γγ

|      |                            |                   |                            |                   |                   |                  |                  |                            |                   |                    |       |                    |                   | •              | •                 |                   |                |                   |                    |                |                         |                              |                |                   |                        |                   |                |                                       |                                       |                |                |          |                 |           |
|------|----------------------------|-------------------|----------------------------|-------------------|-------------------|------------------|------------------|----------------------------|-------------------|--------------------|-------|--------------------|-------------------|----------------|-------------------|-------------------|----------------|-------------------|--------------------|----------------|-------------------------|------------------------------|----------------|-------------------|------------------------|-------------------|----------------|---------------------------------------|---------------------------------------|----------------|----------------|----------|-----------------|-----------|
| EV12 | -0.00                      | -0.01             | -0.15                      | 0.01              | -0.20             | -0.36            | -0.00            | 0.02                       | -0.01             | -0.13              | -0.16 | -0.06              | 0.00              | -0.00          | 0.37              | -0.30             | 0.69           | 0.10              | 0.14               | 0.14           | 0.00                    | -0.02                        | -0.05          | -0.01             | 0.00                   | -0.02             | 0.00           | 0.00                                  | -0.01                                 | -0.00          | -0.00          | 0.00     | 0.00            | λ =0.0067 |
| EV11 | 0.00                       | -0.01             | 0.04                       | 0.01              | -0.03             | -0.05            | -0.00            | -0.02                      | 0.00              | -0.10              | 0.03  | -0.00              | 0.00              | 0.00           | 0.06              | -0.05             | 0.11           | 0.01              | 0.02               | -0.95          | -0.00                   | 0.15                         | 0.05           | 0.11              | -0.01                  | 0.13              | -0.01          | -0.01                                 | 0.09                                  | -0.00          | 0.00           | -0.00    | 0.00            | λ =0.0108 |
| EV10 | -0.00                      | -0.00             | 0.06                       | 0.02              | -0.09             | -0.13            | -0.00            | 0.37                       | -0.00             | 0.05               | -0.02 | -0.00              | 0.00              | -0.00          | 0.01              | 0.02              | -0.14          | 0.02              | 0.03               | -0.05          | 0.00                    | 0.04                         | -0.89          | 0.06              | 0.00                   | 0.03              | 0.00           | -0.00                                 | 0.02                                  | 0.00           | 0.00           | 0.00     | 0.00            | λ =0.027  |
| EV9  | -0.00                      | 0.01              | 0.03                       | 0.09              | -0.38             | -0.65            | -0.00            | -0.08                      | -0.01             | -0.17              | 0.03  | -0.08              | 0.00              | -0.02          | 0.13              | 0.04              | -0.56          | 0.09              | 0.12               | 0.02           | -0.00                   | -0.01                        | 0.18           | -0.02             | -0.00                  | -0.01             | -0.00          | -0.00                                 | -0.01                                 | -0.00          | -0.00          | -0.00    | 0.00            | λ =0.038  |
| EV8  | -0.00                      | 0.27              | 0.38                       | 0.02              | 0.06              | 0.10             | 0.00             | 0.02                       | 0.00              | -0.78              | 0.37  | 0.07               | -0.00             | 0.01           | -0.04             | 0.00              | 0.09           | 0.00              | 0.00               | 0.09           | -0.00                   | -0.03                        | -0.06          | -0.04             | 0.00                   | -0.03             | 0.00           | 0.00                                  | -0.02                                 | -0.00          | -0.00          | -0.00    | -0.00           | λ =0.075  |
| EV7  | -0.00                      | 0.03              | 0.03                       | 0.09              | 0.15              | 0.32             | 0.00             | 0.00                       | 0.00              | 0.02               | 0.01  | 0.05               | 0.00              | -0.10          | 0.83              | -0.25             | -0.31          | -0.04             | -0.05              | 0.00           | 0.00                    | 0.00                         | -0.01          | 0.00              | 0.00                   | 0.00              | -0.00          | 0.00                                  | 0.00                                  | -0.00          | -0.00          | -0.00    | 0.00            | λ =0.89   |
| EV6  | 0.01                       | -0.24             | 0.01                       | -0.90             | 0.21              | -0.14            | 0.01             | 0.01                       | 0.01              | -0.11              | 0.01  | 0.01               | -0.00             | 0.15           | 0.10              | -0.03             | -0.08          | 0.00              | 0.01               | 0.03           | 0.00                    | 0.05                         | 0.00           | 0.08              | 0.00                   | 0.05              | 0.00           | 0.00                                  | 0.03                                  | 0.00           | -0.00          | -0.00    | -0.00           | λ =1.78   |
| EV5  | -0.02                      | 0.64              | -0.09                      | -0.24             | 0.04              | -0.06            | 0.00             | 0.00                       | 0.00              | 0.15               | -0.09 | -0.01              | -0.00             | 0.05           | 0.02              | -0.01             | -0.02          | 0.00              | 0.00               | -0.19          | -0.02                   | -0.28                        | -0.04          | -0.52             | -0.01                  | -0.27             | -0.03          | -0.01                                 | -0.16                                 | -0.03          | 0.00           | -0.00    | -0.00           | λ =2.87   |
| EV4  | -0.01                      | 0.68              | -0.06                      | -0.08             | 0.01              | -0.04            | 0.00             | -0.01                      | -0.00             | 0.13               | -0.07 | -0.01              | 0.00              | 0.08           | 0.00              | -0.00             | -0.01          | 0.00              | 0.00               | 0.14           | 0.01                    | 0.27                         | 0.06           | 0.56              | 0.02                   | 0.26              | 0.04           | 0.01                                  | 0.17                                  | 0.04           | -0.00          | -0.00    | 0.00            | λ =20.2   |
| EV3  | -0.01                      | 0.05              | -0.01                      | -0.17             | 0.03              | -0.04            | 0.00             | 0.00                       | 0.00              | -0.01              | -0.01 | 0.00               | -0.00             | -0.98          | -0.07             | 0.02              | 0.03           | 0.00              | 0.00               | 0.01           | 0.00                    | 0.01                         | 0.00           | 0.03              | 0.00                   | 0.01              | 0.00           | 0.00                                  | 0.01                                  | 0.00           | -0.00          | 0.00     | -0.00           | λ =106    |
| EV2  | -0.85                      | -0.02             | 0.00                       | -0.14             | -0.44             | 0.25             | -0.01            | -0.01                      | -0.02             | -0.01              | 0.00  | -0.00              | 0.00              | 0.01           | 0.00              | -0.00             | -0.00          | -0.00             | -0.00              | 0.00           | 0.00                    | 0.00                         | 0.00           | 0.01              | 0.00                   | 0.00              | 0.00           | 0.00                                  | 0.00                                  | 0.00           | -0.00          | 0.00     | 0.00            | λ =34473  |
| EV1  | -0.53                      | -0.02             | 0.00                       | 0.23              | 0.71              | -0.40            | 0.02             | 0.02                       | 0.04              | 0.01               | -0.00 | 0.00               | -0.00             | -0.00          | -0.00             | 0.00              | 0.00           | -0.00             | -0.00              | -0.00          | 0.00                    | -0.00                        | -0.00          | -0.00             | 0.00                   | -0.00             | -0.00          | 0.00                                  | -0.00                                 | -0.00          | -0.00          | -0.00    | -0.00           | λ =346827 |
|      | $\mathbf{c}_{\mathrm{HG}}$ | $\mathbf{c}_{uG}$ | $\mathbf{c}_{\mathrm{uH}}$ | $\mathbf{c}_{HW}$ | $\mathbf{c}_{HB}$ | c <sub>HWB</sub> | $\mathbf{c}_{W}$ | $\mathbf{c}_{\mathrm{uW}}$ | $\mathbf{c}_{uB}$ | $c_{\rm HI}^{(3)}$ | C,    | $\mathbf{c}_{HDD}$ | c <sub>Hbox</sub> | $c_{Hq}^{(3)}$ | $\mathbf{c}_{Hu}$ | $\mathbf{c}_{Hd}$ | $c_{Hq}^{(1)}$ | $\mathbf{c}_{He}$ | $c_{\rm HI}^{(1)}$ | c <sub>G</sub> | $\mathbf{c}_{qq}^{(1)}$ | c <sup>(1)<sup>,</sup></sup> | $c_{qq}^{(3)}$ | c <sup>(3)'</sup> | <b>c</b> <sub>uu</sub> | C <sup>'</sup> uu | $c_{ud}^{(8)}$ | <b>c</b> <sup>(1)</sup> <sub>qu</sub> | <b>c</b> <sup>(8)</sup> <sub>qu</sub> | $c_{qd}^{(8)}$ | $c_{ud}^{(1)}$ | $c_{eH}$ | c <sub>dH</sub> |           |

Introduction

Analysis

EFT interpretation



# EFT interpretation: combination of channels

Channels considered in the combination:

|                     | Decay channel                    | Target Production Modes                             | $\mathcal{L}$ [fb <sup>-1</sup> ] | Ref.    | Used in combined measurement  |
|---------------------|----------------------------------|-----------------------------------------------------|-----------------------------------|---------|-------------------------------|
|                     | $H \rightarrow \gamma \gamma$    | ggF, VBF, WH, ZH, ttH, tH                           | 139                               | [10]    | Everywhere                    |
|                     | И 、77*                           | ggF, VBF, $WH$ , $ZH$ , $t\bar{t}H(4\ell)$          | 139                               | [11]    | Everywhere                    |
|                     | $\Pi \rightarrow ZZ$             | $t\bar{t}H$                                         | 36.1                              | [19]    | Everywhere but STXS and SMEFT |
|                     | $H \rightarrow W/W^*$            | ggF, VBF                                            | 139                               | [12]    | Everywhere                    |
|                     | $\Pi \rightarrow \psi \psi \psi$ | $t\bar{t}H$                                         | 36.1                              | [19]    | Everywhere but STXS and SMEFT |
| ATLAS-CONF-2021-053 | $H \rightarrow \tau \tau$        | ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$ | 139                               | [13]    | Everywhere                    |
|                     | $H \rightarrow \ell \ell$        | $t\bar{t}H$                                         | 36.1                              | [19]    | Everywhere but STXS and SMEFT |
|                     |                                  | WH, ZH                                              | 139                               | [14–16] | Everywhere                    |
|                     | $H \rightarrow b \bar{b}$        | VBF                                                 | 126                               | [17]    | Everywhere                    |
|                     |                                  | $t\bar{t}H$                                         | 139                               | [18]    | Everywhere                    |
|                     | $H \rightarrow \mu \mu$          | $ggF, VBF, VH, t\bar{t}H$                           | 139                               | [20]    | Everywhere but STXS and SMEFT |
|                     | $H \rightarrow Z\gamma$          | $ggF, VBF, VH, t\bar{t}H$                           | 139                               | [21]    | Everywhere but STXS and SMEFT |
|                     | $H \rightarrow inv$              | VBF                                                 | 139                               | [22]    | Sec. 6.3 & 6.5                |

 $(cc), (\tau\tau), (\mu\mu)$  Channels are not included due to the underlying topU3I symmetry:

- Leptons between generations are not distinguished
- 2<sup>nd</sup> generation quarks are not distinguished

#### Introduction

Analysis

#### EFT interpretation

### EFT interpretation: combined measurements



# Conclusion

- Diphoton channel allows precise measurements in the Higgs sector
- STXS framework: suitable for combination
- Measurements: inclusive, production modes, STXS, kappa-framework
- EFT interpretation in the SMEFT

# Prospects

• EFT interpretation of combined Higgs measurements

### Contributions

Signal & background modelling. Spurious signal evaluation.

Acceptances, purities, estimation.

Likelihood scans, sensitivities.

Ongoing activity on the combined EFT fits.



#### Introduction

#### EFT interpretation



EFT interpretation: Symmetry scheme topU3I: scheme used in ATLAS global combination quarks Ieptons "top  $\mathcal{U}(3)_l$ " = top  $\otimes \mathcal{U}(3)_l \otimes \mathcal{U}(3)_e$ Quarks: 1<sup>st</sup> + 2<sup>nd</sup> generations:  $(q_l, u_r, d_r) \in \mathcal{U}(2)_q \otimes \mathcal{U}(2)_u \otimes \mathcal{U}(2)_d$ 3<sup>rd</sup> generation:  $(Q_L, t_r, b_r)$  - no symmetry no CKM  $\mathbb{V}_{CKM} = \mathbb{1}$ 

21

"At energy scales, where the first two generations of quarks are undistinguishable"

EFT interpretation: Symmetry scheme topU3I: scheme used in ATLAS global combination quarks Ieptons "top  $\mathcal{U}(3)_l$ " = top  $\otimes \mathcal{U}(3)_l \otimes \mathcal{U}(3)_e$ Quarks: Leptons:  $\mathcal{U}(3)_l = \mathcal{U}(3)_l \otimes \mathcal{U}(3)_e$ 1<sup>st</sup> + 2<sup>nd</sup> generations: All generations symmetry:  $(q_l, u_r, d_r) \in \mathcal{U}(2)_q \otimes \mathcal{U}(2)_u \otimes \mathcal{U}(2)_d$  $e = \mu = \tau$ No mixing 3<sup>rd</sup> generation:  $(Q_L, t_r, b_r)$  - no symmetry no CKM Input parameters:  $\mathbb{V}_{CKM} = \mathbb{1}$  $(m_W, m_Z, G_F)$ "At energy scales, where the first two generations of

quarks are undistinguishable"

# Luminosity @ Run 2





31

Arbitrary Units

Table 10: Wilson coefficients  $c_i$  and corresponding dimension-6 SMEFT operators  $O_i^{(6)}$  used in this analysis.

| Wilson coefficient                                      | Operator                                                                                | Wilson coefficient                                       | Operator                                                               |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| $c_{H\square}$                                          | $(H^\dagger H) \square (H^\dagger H)$                                                   | $c_{uG}$                                                 | $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$           |
| $c_{HDD}$                                               | $\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$                    | $c_{uW}$                                                 | $(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$        |
| $c_{HG}$                                                | $H^\dagger H  G^A_{\mu u} G^{A\mu u}$                                                   | $C_{uB}$                                                 | $(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$             |
| c <sub>HB</sub>                                         | $H^{\dagger}HB_{\mu u}B^{\mu u}$                                                        | $c'_{ll}$                                                | $(\bar{l}_p \gamma_\mu l_t) (\bar{l}_r \gamma^\mu l_s)$                |
| $c_{HW}$                                                | $H^{\dagger}HW^{I}_{\mu u}W^{I\mu u}$                                                   | $c^{\scriptscriptstyle (1)}_{oldsymbol{q}oldsymbol{q}}$  | $(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$                |
| $c_{HWB}$                                               | $H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu}$                                      | $c^{\scriptscriptstyle (3)}_{oldsymbol{q}oldsymbol{q}}$  | $(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$  |
| C <sub>eH</sub>                                         | $(H^{\dagger}H)(\overline{l}_{p}e_{r}H)$                                                | $c_{qq}$                                                 | $(\bar{q}_p \gamma_\mu q_t) (\bar{q}_r \gamma^\mu q_s)$                |
| $c_{uH}$                                                | $(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$                                         | $c^{\scriptscriptstyle (31)}_{oldsymbol{q}oldsymbol{q}}$ | $(\bar{q}_p \gamma_\mu \tau^I q_t) (\bar{q}_r \gamma^\mu \tau^I q_s)$  |
| $c_{dH}$                                                | $(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$                                                     | c <sub>uu</sub>                                          | $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$                 |
| $c_{Hl}^{_{(1)}}$                                       | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$             | $C_{uu}^{(1)}$                                           | $(\bar{u}_p \gamma_\mu u_t)(\bar{u}_r \gamma^\mu u_s)$                 |
| $c_{Hl}^{(3)}$                                          | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ | $C_{\boldsymbol{q}\boldsymbol{u}}^{(1)}$                 | $(\bar{q}_p \gamma_\mu q_t) (\bar{u}_r \gamma^\mu u_s)$                |
| $c_{He}$                                                | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$             | $c_{ud}^{(8)}$                                           | $(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$        |
| $c^{\scriptscriptstyle (1)}_{Hq}$                       | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$             | $c^{\scriptscriptstyle (8)}_{oldsymbol{q} u}$            | $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$        |
| $c^{\scriptscriptstyle (3)}_{oldsymbol{H}oldsymbol{q}}$ | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ | $c_{qd}^{(8)}$                                           | $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$        |
| $c_{Hu}$                                                | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$             | $c_W$                                                    | $\epsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{J ho}_{ ho}W^{K\mu}_{ ho}$ |
| $c_{Hd}$                                                | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$             | $c_G$                                                    | $f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$                  |

| STXS classes                                                                                                                                                                                               | Variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual<br>STXS classes from<br>$gg \rightarrow H$<br>$qq' \rightarrow Hqq'$<br>$qq \rightarrow H\ell\nu$<br>$pp \rightarrow H\ell\ell$<br>$pp \rightarrow H\ell\ell$<br>$pp \rightarrow H\nu\bar{\nu}$ | All multiclass BDT variables,<br>$p_{T}^{\gamma\gamma}$ projected to the thrust axis of the $\gamma\gamma$ system $(p_{Tt}^{\gamma\gamma})$ ,<br>$\Delta\eta_{\gamma\gamma}, \eta^{Zepp} = \frac{\eta_{\gamma\gamma} - \eta_{jj}}{2},$<br>$\phi_{\gamma\gamma}^{*} = \tan\left(\frac{\pi -  \Delta\phi_{\gamma\gamma} }{2}\right)\sqrt{1 - \tanh^{2}\left(\frac{\Delta\eta_{\gamma\gamma}}{2}\right)},$<br>$\cos\theta_{\gamma\gamma}^{*} = \left \frac{(E^{\gamma_{1}} + p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} - p_{z}^{\gamma_{2}}) - (E^{\gamma_{1}} - p_{z}^{\gamma_{1}}) \cdot (E^{\gamma_{2}} + p_{z}^{\gamma_{2}})}{m_{\gamma\gamma} + \sqrt{m_{\gamma\gamma}^{2} + (p_{T}^{\gamma\gamma})^{2}}}\right $<br>Number of electrons and muons. |
| all <i>tt</i> H and <i>tHW</i><br>STXS classes<br>combined                                                                                                                                                 | $p_{\rm T}, \eta, \phi \text{ of } \gamma_1 \text{ and } \gamma_2,$<br>$p_{\rm T}, \eta, \phi \text{ and } b$ -tagging scores of the six highest- $p_{\rm T}$ jets,<br>$E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}$ significance, $E_{\rm T}^{\rm miss}$ azimuthal angle,<br>Top reconstruction BDT scores of the top-quark candidates,<br>$p_{\rm T}, \eta, \phi$ of the two highest- $p_{\rm T}$ leptons.                                                                                                                                                                                                                                                                                                                                           |
| tHqb                                                                                                                                                                                                       | $p_{T}^{\gamma\gamma}/m_{\gamma\gamma}, \eta_{\gamma\gamma},$ $p_{T}, \text{ invariant mass, BDT score and } \Delta R(W, b) \text{ of } t_{1},$ $p_{T}, \eta \text{ of } t_{2},$ $p_{T}, \eta \text{ of } j_{F},$ Angular variables: $\Delta \eta_{\gamma\gamma t_{1}}, \Delta \theta_{\gamma\gamma t_{2}}, \Delta \theta_{t_{1}j_{F}}, \Delta \theta_{t_{2}j_{F}}, \Delta \theta_{\gamma\gamma j_{F}}$ Invariant mass variables: $m_{\gamma\gamma j_{F}}, m_{t_{1}j_{F}}, m_{t_{2}j_{F}}, m_{\gamma\gamma t_{1}}$ Number of jets with $p_{T} > 25 \text{ GeV}$ , Number of <i>b</i> -jets with $p_{T} > 25 \text{ GeV}^{*};$                                                                                                                         |

Number of leptons<sup>\*</sup>,  $E_{\rm T}^{\rm mass}$  significance<sup>\*</sup>





#### From Michael Spira's slides





 $\sim$ 

#### stolen from M. Grazzini@Higgs10

• Signal strength

| $\mu \equiv \frac{\sigma_{observed}}{\sigma_{SM}}$ | <ul> <li>depends on reference, high syst error, evolves with<br/>knowledge of the SM</li> </ul> |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------|
| $\sigma_{fiducial}$                                |                                                                                                 |
|                                                    | inclusive in production modes                                                                   |
|                                                    |                                                                                                 |
|                                                    |                                                                                                 |

• Signal strength

Cross-section

 $\mu \equiv \frac{\sigma_{observed}}{\sigma_{SM}} - \text{depends of knowledge}$   $\sigma_{fiducial} - \text{specific for inclusive in the second se$ 

- depends on reference, high syst error, evolves with knowledge of the SM

- specific for decay channel inclusive in production modes

 $\sigma_{fiducial}$ 

 $\mu \equiv \frac{\sigma_{observed}}{}$ 

 $\sigma_{SM}$ 

• Signal strength

• Cross-section

• Differential cross-section

$$\frac{d\sigma}{dX}, X = y, p_T, \dots$$
 inc

- depends on reference, high syst error, evolves with knowledge of the SM
- specific for decay channel inclusive in production modes
  - inclusive in production modes

 $\sigma_{fiducial}$ 

• Signal strength

• Cross-section

- Differential cross-section
- Kappa-framework

# ection $\frac{d\sigma}{dX}, X = y, p_T, \dots$

- $\mu \equiv \frac{\sigma_{observed}}{\sigma_{SM}} \qquad \left| \begin{array}{c} \text{- depends on reference, high syst error, evolves with} \\ \text{knowledge of the SM} \end{array} \right|$ 
  - specific for decay channel inclusive in production modes
    - inclusive in production modes
    - probes amplitudes (and interference) specific to a given model (probes vertex)
## Higgs production and decay

Production modes





66