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Figure 1: Figure by project ALeRCE [3] 2/28



Introduction

The whole endeavour will create an enormous amount of data. Over 15
terabytes will have to be processed every night

Figure 2: Supernovae from the 2005-2007 observing campaigns of SDSS Survey. 3/28



Traditional methods



Overview
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Limitations

The traditional method achieved remarkable results yet it has SOME
limitations. Indeed, feature extraction (to produce calibrated fluxes +
errors) loses information :

1. No information on the quality of the image (observing condition)
quality reduction

2. The flux extraction may not be optimal (alignment of images, PSF
estimation, ...)

3. The background scene (usually a star or a galaxy) is not used
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Our approach



Goal
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Goal
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Challenges

• few existing works
• Few Datasets to use for training
• Imbalanced classes

Class Name Count

AGN 906
SNIa 1988

Variable 3225
SNOther 2130

Table 1: Number of objects per class for
SDSS database.
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Challenges

• Mismatched dataset
• Time series classification is a
hard task in deep learning

• Missing observations
Figure 3: True redshift distributions for
both the training and test sets in the
PLAsTiCC dataset [1].

9/28



Challenges

Figure 4: Each image has five filters (u, g,
r, i, z). The black channel represent the
missing observation Figure 5: LSST filter changer

See how filter changer work
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https://youtu.be/eq5fopwwW3M?t=140


Tackled challenges

1. Develop a sequential model that classifies Astronomical image time
series.

2. Mitigate the impact of missing observations and class imbalance
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Class imbalance

• We oversampled our database using data augmentation
• Data augmentation: Dropping some steps from the sequence,
sequence rotation, horizontal and vertical flip. Sequence shifting.
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Data modeling

• For each band (u, g, r, i,
z), we assign a unique
number id ∈ {1, 2, 3, 4, 5}.
Then we create 2D band
embedding
BEid ∈ RH×W

BEid = BandEmbed(id) (1)

Jm = Concat(Xm, BEid) m ∈ [1, ..,M ]

(2)
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Data modeling
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Architecture
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3D Convolution Network

• The original Transformer’s
self-attention mechanism
consumes O(M 2). Ours
O(M 2 ×H ×W )

Sn = 3DCNN(J(n−1)×K+1, ..., Jn×K)

(3)
• Helps capture the local
spatial-temporal high-level
features
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Convolutional BERT

• BERT stands for Bidirectional
Encoder Representations from
Transformers

• Positional encoder:

P(n,2i) = sin(n/100002i/D), (4)

P(n,2i+1) = cos(n/100002i/D), (5)
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MultiHead Convolutional Self Attention

Liu et al. (2021), ConvTransformer [6]
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MultiHead Convolutional Self Attention

H(n,m)=Mθ(Qn,Km) n,m∈[1,..,N ] (6)

Hn=SoftMax(Hn) where Hn∈RH′×W ′×N (7)

V ′
n=

N∑
m=1

H(n,m)Vm (8)

MultiHead(Q,K,V )=Concat(V ′
n1 ,....,V

′
nT

) (9)
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Architecture
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Dataset

We used the SDSS dataset [5] that contains 10258 objects. We organized
the dataset for two types of class categories

• Three Classes: AGN, SN, Variable
• Four Classes: AGN, SNIa, Variable, SNOther
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Results



Comparison
Model Bands Dataset Accuracy F1 score ̂ Number

params

ConvEntion (Ours) ugriz Images 79.83 70.62 1.253M

CNN+GRU [4] ugriz Images 66.39 63.22 1.993M

ConvEntion (Ours) g Images 76.89 63.20 1.253M

CNN+GRU [4] g Images 63.67 61.00 1.992M

CNN+LSTM [2] ugriz Images 64.08 60.65 2.190M

CNN+LSTM [2] g Images 63.00 60.00 2.189M

SuperNNova (BNN)
[7]

ugriz Light curves 65.54 55.40 -

SITS-BERT [9] ugriz Light curves 67.43 51.60 0.596M

SCONE (CNN) [8] ugriz Light curves 62.57 50.43 22.2K

SuperNNova (RNN)
[7]

ugriz Light curves 56.30 42.60 -

LSTM ugriz Light curves 55.24 40.33 60K
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Comment

• Images perform better than light curves
• ConvEntion has less parameters and take less time to train and
achieved the best accuracy
• Parallel computation
• Merging spatio-temporal feature
• Local features are captured by 3DCNN while ConvBERT handles the
global features.
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MC

• Supernovas share a lot
of similarities which
confused the model.

• Misclassification
between AGN and
variable
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Ablation results

The following table represents different ablation experiments to show the
impact of each component in our model.

Model Accuracy F1 score ̂ Run time

ConvEntion 79.83 70.62 1.5

No Oversampling 79.36 64.23 1.5

No Band Embedding 70.74 59.85 1.5

Fixed Band Embedding 78.45 65.73 1.5

2D CNN 77.38 62.25 4.5
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Ablation results

This figure shows the comparison of macro accuracy using MJD versus the
position in the function of the percentage of missing observations.
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Conclusion & Perspective



Conclusion

1. We mitigated the problem of missing observation.
2. We introduced a solution to lower the computation of the attention
map. Also, capturing local features using 3DCNN.

3. We propose the first ever convolutional BERT to handle
spatio-temporal features.

4. We mitigate the impact of class imbalance using oversampling and
data augmentation.
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Perspective

• We will try to study the impact of some important metadata on the
model’s performance.

• Improve the model discrimination capabilities using contrastive
learning.

• Conduct a major analysis of the results of our work.
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Questions?

28/28



References i

K. Boone.
Avocado: Photometric classification of astronomical transients with
gaussian process augmentation.
The Astronomical Journal, 158(6):257, Dec 2019.
R. Carrasco-Davis, G. Cabrera-Vives, F. Förster, P. A. Estévez, P. Huijse,
P. Protopapas, I. Reyes, J. Martínez-Palomera, and C. Donoso.
Deep learning for image sequence classification of astronomical
events.
Publications of the Astronomical Society of the Pacific,
131(1004):108006, Sep 2019.



References ii

F. e. a. Förster.
The automatic learning for the rapid classification of events (alerce)
alert broker.
The Astronomical Journal, 161(5):242, Apr 2021.
C. Gómez, M. Neira, M. Hernández Hoyos, P. Arbeláez, and J. E.
Forero-Romero.
Classifying image sequences of astronomical transients with deep
neural networks.
Monthly Notices of the Royal Astronomical Society, 499(3):3130–3138,
Oct 2020.



References iii

J. A. Holtzman et al.
The Sloan Digital Sky Survey-II Photometry and Supernova IA Light
Curves from the 2005 Data.
Astron. J., 136:2306–2320, 2008.
Z. Liu, S. Luo, W. Li, J. Lu, Y. Wu, S. Sun, C. Li, and L. Yang.
Convtransformer: A convolutional transformer network for video
frame synthesis, 2021.



References iv

A. Möller and T. de Boissière.
Supernnova: an open-source framework for bayesian, neural
network-based supernova classification.
Monthly Notices of the Royal Astronomical Society, 491(3):4277–4293,
Dec 2019.
H. Qu, M. Sako, A. Möller, and C. Doux.
Scone: Supernova classification with a convolutional neural network.
The Astronomical Journal, 162(2):67, Jul 2021.



References v

Y. Yuan and L. Lin.
Self-supervised pretraining of transformers for satellite image time
series classification.
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 14:474–487, 2021.


	Introduction
	Traditional methods
	Our approach
	Results
	Conclusion & Perspective
	Appendix

