

Missing data reconstruction using ML techniques with the gaseous

TPC PandaX-III experiment

Andrii Lobasenko CEA Saclay IRFU/DPhN IN2P3/IRFU Machine Learning workshop 27/09/2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800945 — NUMERICS — H2020-MSCA-COFUND-2017 Presentation Plan

Introduction

 1.1 0ν2β searches
 1.2 Xe136 gaseous TPC
 Software environment REST
 Simulations
 Problems with Micromegas
 Energy prediction with ML

PhysRevLett.123.161802, Search for $0\nu\beta\beta$ with the Complete EXO-200 Dataset

Topological difference b/w bkg and signal

PANDAX

PANDAX PARTICLE AND ASTROPHYSICAL KENON IDC

PANDAX

Micromegas basic principle Electrode de derive V = -870 V**TPC** volume Weak elec. field E = 1.5 kV/cmMicromesh V = -400 VStrong elec. field Pistes (anode) E = 40 kV/cmRead-out plane Particule chargee

Software environment REST

Software environment REST

Problems with Micromegas

Gain map for one Micromegas module

Problems with Micromegas

Gain map for one Micromegas module

Before starting the energy reconstruction, a Convolutional Neural Network (CNN) model is being tested to predict the primary energy of the event from the simulated detector data without missing information

In this study the output is one value Feature maps x32 (Regression problem) x128 f.maps x64 Input f.maps Output: Energy prediction 40 60 80 100 20 120 Convolutions Subsampling Convolutions Subsampling Fully connected 3 Dense layers Kernels 5x5 Kernels 3x3 Kernels 3x3

Loss function for the back-propagation: Mean Squared Error (MSE)

Preliminary

Individual event normalization by the max amplitude in each event (only the topological information is stored)

CNN

50

40

Entries

20

10

Predicted vs Primary E

3000

2500

keV

шì

Promising preliminary results on ML techniques on the energy prediction Individually normalized data prediction will be completed

Next steps:

Energy prediction with events **with missing channels** Update of the models architecture for **bkg/signal discrimination** Energy prediction based on **real detector gain**

Microbulks

Thermo-bonded MM

Micromegas based on a copper clad 50µm-thick kapton foil; 40µm diameter holes Top face → mesh Bottom face → read-out plane Constant kapton foil thickness → very good gain homogeneity → best energy resolution among MPGDs Only kapton and copper → excellent radiopurity ~0.1 µBq/cm² for ²¹⁴Bi and ²⁰⁸Tl Studied by Zaragoza, IRFU and SJTU Built at CERN, used at CAST, n TOF

Regular Micromegas with resistive Germanium layer Mesh spacing by thermo-bonded polyester layer Comparison with Microbulk:

- more robust
- low radioactive material
- sparks protection with resistive layer
- larger energy resolution expected compared to Microbulks
 Developed and built at USTC (Hefei, China)

Problems with Micromegas

22

Microbulks

Fragile detectors: cut channels, dark currents Gain inhomogeneity for some detectors (not all) linked to production problems Rather good resolution but not as good as expected

Thermo-bonded MM

Good energy resolution of 15% at 6 keV (Ar + 5% isobutane 1 bar)

Some non-uniformity of the gain a priori due to production methods, improved performance with new methods

Unstable dark current at high pressure

cea

Blob charge correlation

The correlation b/w Blob Charges is not evident, however from the first approximation we may notice that both **Blobs contain** \sim **700 keV** of the total reconstructed energy (E_x + E_y)

Blob charge correlation

Better determination of the Blob charge deposition

Study of the correlation b/w E deposition and Scattering angle θ (Pure Geant4)

Distribution of the distance to the last Edep wrt Eloss

Angle distribution wrt distance to the last Edep

Most of the deposited energy is in the "tail" Scattering angle could be used as a feature for NN application Ongoing study of the real topology of the event determination

Hits Event

Missing channel repairing with linear interpolation (Benjamin Manier)

- Added hits are based on the side segments on the cut strip
- Energy is interpolated linearly from the side segment

Image

Data coherence

Primary and Predicted values