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Outline

Novel Machine Learning method for
calorimeter reconstruction. Introduction
ECAL reconstruction

Multiple architectures (based on CNN,
GNN) developed and tested.

Focusing on the reasoning behind using

networks CNN double step




Introduction



CMS experiment

Discovery of the Higgs boson in 2012
(along with ATLAS).

Physics scope: probe standard £
model and search for physics =

beyond standard model.

Uses proton-proton collisions at the
center of mass energy from 7 TeV to
13.6 TeV.
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Electromagnetic CALorimeter

Homogeneous calorimeter.

Key:

Around 76 000 PbWO, crystals. ——— Muon

Electron
Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)

Mainly used for the reconstruction  ----- Photon
of electrons and photons.

Plays crucial role for all physics (
analysis, e.g. for Higgs decay
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Reconstruction in ECAL

Reconstruct position and energy of electrons and photons from electromagnetic
showers.

Current CMS algorithm (pfclustering): °

Reconstructed energy deposits left by -
traversing particle in crystals

separated
clusters

Identify local maximum (seed)

Aggregate crystals around seed - grow -
a cluster

Separate overlapping clusters using -
Gaussian mixture algorithm

Correct the predicted energy using
Boosted Decision Tree

BDT correction
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Motivation

Creating a novel to improve ECAL reconstruction.

Main objectives:

= Improving and :
=> Improving discrimination:

Photons coming from neutral pion decay create two
overlapping clusters in the calorimeter, which is hard to
discriminate from a single photon’s signature.
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Source: science 2.0


https://www.science20.com/tommaso_dorigo/photons_and_neutral_pions-255827




Detector simulation

simulated in Geant4 to test the performance of the algorithms.

(but not tilted).

51 x 51 x 1 crystals
Size: 2.2x 2.2 x23cm
Material: PbWwO4
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Dataset creation

Photons with [1, 100] GeV energy are used, directed perpendicularly to the calorimeter.

Per crystal noise is added (o = 167 MeV) and cut is set on 50 MeV.

Data samples
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o- % true center position

* true center position

In each sample
the distance
between two
clusters < 3

crystals.
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Networks
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One-shot network

Energy deposits in crystals can be represented as

use (CNN).

First attempt:

-> CNN applied on (dim: 51 x 51).

- Predicting (nx 2), wheren -

number of particles per window.
Results:

-> The network is able to make prediction but

than for pfclustering.

Conclusion:

-> One network is number of
particles and their position

- Not scalable for the full ECAL window (360 x 170).
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Double-step network: convolutions

Next step: separate the task into two CNN networks (with similar architecture).

Coordinate resolution
7 X 7 windows centered on all the
crystals with > 0.5 GeV deposit. faps [—aauliesiep.nel

—— one-shot net

l —— pfclustering
10000
1st network: For each window predicts a 8000
' probability to be a seed (or a real =
Seed ﬁnder cluster). § 6000
Only windows
with > 0.5 4000
probability
2000
2nd network: Predicts precise position and energy
) for every seed that passed the 0
center finder threshold. 02 -01 00 0.1 0.2

dx

Significantly improved resolution both for position and energy reconstruction! 13



Double-step network: convolutions

Signal - the ratio of correctly predicted clusters to the full number of clusters. Background - number
of events misidentified as clusters.

One particle
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“Double-counting” problem

Input windows do not communicate in the network — problem appears when particle
position is close to the border:

Energy estimation

5
10 —— double-step net

Probability to be seed: 0.952

Probability to be seed: 0.996
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Almost identical predicted positions (12.68, 34.98) \

I imation.
and (12.67, 35.00) as well as energies. Creates a large energy overestimation
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Double-step network: convolutions + graphs

Solution: add communication between input windows.

Using Graph Neural Networks (GNN) and Message-Passing (MP) each window can
learn about its neighbors.

. 1
PLANT %}

Dataset simulated
with Geant4

-

Initial input

7x7 window
(> 0.5 GeV)

One by one
No connection
between clusters

\

seed
finder

Seed finder

Take only windows that
pass threshold (0.3)

_—

Input to
center finder

input - all the clusters
that passed threshold
from one event (window)

FH_

Apply CNN independently on
each input window

N

—

Message passing
(learning about the
neighbors)

_

(
(

)
)

_—

Dense layers
(applied separately)

+—

(x,y), en, p

(x,y), en, p

(nyhemj:///

Center finder

Vector of latent
features

Final output

Center finder predictions are precise coordinates, energy and corrected probability to
be a real cluster after adding MP.



Final* results

Count

Energy estimation

10°
—— DS net (CNN)
—— DS net (GNN)
104
103
102
10!
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1 nor
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ZE pred/ E true

With MP overestimation of energy is
significantly reduced - “double-counting”
solved.

® network
® CMS algorithm
X truth

44 1
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X

Event example where network
correctly identifies two clusters while
pfclustering predicts only one.
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Count

Final* results

* — convergence on the exact architecture is ongoing.

Both double-step (DS) networks perform better than pfclustering.

Coordinate resolution - 1 particle Energy resolution - 1 particle Coordinate resolution - 2 particles Energy resolution - 2 particles
12000 | —— DS net (CNN) 8000 | '—— DS net (CNN) 12000 - —— DS net (CNN) 8000 - —— DS net (CNN)
—— one-shot net —— pfclustering —— pfclustering —— pfclustering
JR— i — —— DS net (GNN) 7000 -~ —— DS net (GNN)
6565 pfclustering 7000 DS net (GNN) 10000
—— DS net (GNN)
6000 6000
8000 8000
5000 5000
€ 1= €
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2000 2000
2000 2000
1000 ﬂ 1000
0 0 0 0
-4 -2 0 2 4 —02 -01 00 01 02 -4 -2 0 2 4
Etrue — Epredicted [GeV] dx

Etrue — Epredfcted [GeV]

Significant improvement in resolution: 0.05 vs. 0.08 ECAL crystals and 0.54 vs. 0.71 GeV !
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Outlook

Short-term objectives:

-> Finalizing the network architecture.

-> Testing performance on “more than two"
clusters per window.

-> Publishing a paper on the achieved results.

Long-term objectives:

- Implementing the ML algorithm in CMS
software and estimating the effect on the final
physics analyses.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 800945 — NUMERICS — H2020-MSCA-COFUND-2017

DESPITE OUR GREAT RESEARCH
RESULTS, SOME HAVE QUESTIONED
OUR AI-BASED METHODOLOGY.

\
BUT WE TRAINED A CLASSIFIER
ON A COLLECTION OF GOOD AND
BAD METHODOLOGY SECTIONS,
AND IT SAYS OURS IS FINE.

]~/

Source: explain xked
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https://www.explainxkcd.com/wiki/index.php/2451:_AI_Methodology
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Energy deposit profile

- Tovalidate the calorimeter simulation the energy deposit profile was plotted.
- Using the data from 1 000 electrons, all at 100 GeV shooting at the crystal center of the
middle crystal.

E1=77.95, E3=93.65, E5=97.00

Ratio of energy in Xtals for simulation |
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Energy deposits from Geant4 simulation of ECAL.

Energy deposits from the simplified detector. http://geant4.in2p3.fr/2005/Workshop/UserSession/P.Mine.pdf

The results are very similar => the simulation can be used as a proxy for CMS ECAL. 21



One-shot network architecture

Dense layers

Convolutional layers g A N
Input image A [
4 N
Output
— _— — - > —_— D
2 x n, tanh
100, relu
32x3x3,relu 64 x5 x5, relu 128 x 5 x 5, relu
32x3x3,relu 64 x 5 x 5, relu 128 x 5x 5, relu 1000, relu
51 x51x1 64 x 3 x 3, relu 128 x 5 x 5, relu + dropout 0.1 500, relu
+ dropout 0.1 + dropout 0.1 fla?en
Hyperparameters:

learning rate = 0.001
batch size = 64
epochs ~ 500
Loss function: Mean Absolute Error



Double-step network architecture

Dense layers Output
' A
Convolutional layers p N ~
Input image A —
) . [
— Seed
finder 1,

activation=sigmoid

500 Position-e |:|
(il leaky RelLU nergy
128x3x3 256 x3x3 + dropout (0.1) :
activation=leaky ReLU activation=leaky RelLU 2400 sstmator 1 * 2, S .
7x7x1 + batch normalization + batch normalization L leaky ReLU \_ activation=sigmoid, tanh
flatten + dropout (0.1)
Hyperpa rameters:

learning rate = 0.0001
batch size = 64

epochs ~ 500

Loss function: Binary Crossentropy (for seed finder) or Mean Absolute Error (for position-energy
estimator).
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Graph Neural Networks

Type of neural network that can operate on and analyze graph structures.
Unlike other types of networks GNN can be easily applied on sparse data, doesn’t require padding.

A graph consists of nodes (contain features of the object) and edges (reflect the relationship between the
nodes).

> In GNNs the information can be shared between the neighbors:

o  The vector features of each node are transformed into “messages” (e.g. using dense layers) that are sent

to the neighbors (message-passing).

o Inthis way, each node learns information about its neighbors and itself. The process is carried out in
parallel and repeated several times.

nodes

HEHH

HH -

Message passing

>

edges

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial notebooks/tutorial7Z/GNN overview.html
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https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial7/GNN_overview.html

