



# Reconstruction of electromagnetic showers in calorimeters using Deep Learning

#### <u>Polina Simkina</u>

Fabrice Couderc, Julie Malclès, Mehmet Özgür Şahin

CEA IRFU

IN2P3/IRFU Machine Learning Workshop 27/09/2022

polina.simkina@cern.ch

### Outline

Novel Machine Learning method for calorimeter reconstruction.

Multiple architectures (based on CNN, GNN) developed and tested.

Focusing on the reasoning behind using particular methods.



## Introduction

#### CMS experiment

Discovery of the **Higgs boson** in 2012 (along with ATLAS).

Physics scope: probe standard model and search for physics beyond standard model.

Uses **proton-proton collisions** at the center of mass energy from 7 TeV to 13.6 TeV.



#### Electromagnetic CALorimeter

Homogeneous calorimeter.

Around 76 000 PbWO<sub>4</sub> crystals.

Mainly used for the reconstruction of **electrons** and **photons**.

Plays crucial role for all physics analysis, e.g. for Higgs decay channels:

$$H \to \gamma \gamma$$
$$H \to ZZ^* \to 4\ell$$



#### Reconstruction in ECAL

Reconstruct **position and energy** of electrons and photons from **electromagnetic showers**.



### Motivation

Creating a novel ML-based algorithm to improve ECAL reconstruction.

Main objectives:

- → Improving energy and coordinates resolution.
- → Improving photon vs. neutral pion discrimination:

Photons coming from neutral pion decay create two overlapping clusters in the calorimeter, which is hard to discriminate from a single photon's signature.



Source: science 2.0

# Simulation

#### Detector simulation

Simplified calorimeter simulated in Geant4 to test the performance of the algorithms.

Crystal parameters same as in ECAL (but not tilted).



Photons with [1, 100] GeV energy are used, directed perpendicularly to the calorimeter.

Per crystal noise is added ( $\sigma$  = 167 MeV) and cut is set on 50 MeV.



## Networks

#### One-shot network

Energy deposits in crystals can be represented as **pixel intensities of an image**  $\rightarrow$  allows to use **Convolutional Neural Network** (CNN).

First attempt:

- → CNN applied on full window (dim:  $51 \times 51$ ).
- → Predicting position of particles (n x 2), where n number of particles per window.

Results:

→ The network is able to make prediction but resolution is always worse than for pfclustering.

Conclusion:

- → One network is not able to predict number of particles and their position simultaneously.
- → Not scalable for the full ECAL window (360 x 170).



#### Double-step network: convolutions

Next step: separate the task into two CNN networks (with similar architecture).



Significantly improved resolution both for position and energy reconstruction!

#### **Double-step network: convolutions**

Signal - the ratio of correctly predicted clusters to the full number of clusters. Background - number of events misidentified as clusters.



40 - 80

40 - 60

### "Double-counting" problem

Input windows do not communicate in the network  $\rightarrow$  problem appears when particle position is close to the border:



Almost identical predicted positions (12.68, 34.98) and (12.67, 35.00) as well as energies.

Creates a large energy overestimation.

#### Double-step network: convolutions + graphs

Solution: add communication between input windows.

Using Graph Neural Networks (GNN) and Message-Passing (MP) each window can learn about its neighbors.



Center finder predictions are **precise coordinates**, **energy and corrected probability** to be a real cluster after adding MP.

#### Final\* results



With MP overestimation of energy is significantly reduced – "double-counting" solved.



Event example where network correctly identifies two clusters while pfclustering predicts only one.

#### Final\* results

\* - convergence on the exact architecture is ongoing.

Both double-step (DS) networks perform better than pfclustering.



Significant improvement in resolution: 0.05 vs. 0.08 ECAL crystals and 0.54 vs. 0.71 GeV !

#### Outlook

Short-term objectives:

- → Finalizing the network architecture.
- → Testing performance on "more than two" clusters per window.
- $\rightarrow$  Publishing a paper on the achieved results.

Long-term objectives:

→ Implementing the ML algorithm in CMS software and estimating the effect on the final physics analyses.

DESPITE OUR GREAT RESEARCH RESULTS, SOME HAVE QUESTIONED OUR AI-BASED METHODOLOGY. BUT WE TRAINED A CLASSIFIER ON A COLLECTION OF GOOD AND BAD METHODOLOGY SECTIONS, AND IT SAYS OURS IS FINE.



19



## Energy deposit profile

- To validate the calorimeter simulation the energy deposit profile was plotted.
- Using the data from **1 000 electrons, all at 100 GeV** shooting at the **crystal center of the middle crystal.**



E1=77.95, E3=93.65, E5=97.00

Energy deposits from the simplified detector.



Energy deposits from Geant4 simulation of ECAL. http://geant4.in2p3.fr/2005/Workshop/UserSession/P.Mine.pdf

The results are very similar => the simulation can be used as a **proxy for CMS ECAL**.

#### One-shot network architecture



#### Hyperparameters:

learning rate = 0.001 batch size = 64 epochs ~ 500 Loss function: Mean Absolute Error

#### Double-step network architecture



#### Hyperparameters:

```
learning rate = 0.0001
batch size = 64
epochs ~ 500
Loss function: Binary Crossentropy (for seed finder) or Mean Absolute Error (for position-energy
estimator).
```

#### **Graph Neural Networks**

- > Type of neural network that can operate on and analyze **graph structures**.
- > Unlike other types of networks GNN can be easily applied on sparse data, doesn't require padding.
- A graph consists of **nodes** (contain features of the object) and **edges** (reflect the relationship between the nodes).
- > In GNNs the information can be shared between the neighbors:
  - The vector features of each node are transformed into "messages" (e.g. using dense layers) that are sent to the neighbors (message-passing).
  - In this way, **each node learns information about its neighbors and itself**. The process is carried out in parallel and repeated several times.

