

Gamma-ray spectrometry of fission fragments : ML analysis of multidimensional spectra

Machine Learning workshop

Mattéo Ballu

*(not yet)* PhD student (supervised by Thomas Materna)

CEA / IRFU / DPhN / LEARN

## Outline

Presentation of the experimental setup

Data and analysis

#### ML techniques

# The experimental setup : ILL and FIPPS spectrometer

What do we measure, for what?

### The ILL (Institut Laue Langevin)





International research centre specialized on neutrons



High-flux research reactor (58 MW)



Provides one of the most intense neutron sources in the world **10<sup>8</sup> n/s/cm<sup>2</sup> at the target** 



Neutron beams and the instruments at ILL

### **Experimental setup**



#### **Spectrometers**

**FIPPS** (Flssion Product Prompt γ-ray Spectrometer)

- 16 clovers, 64 crystals in total
- HPGe (High Purity Germanium) detectors with high energy resolution : ~ 1 ‰ at 1.2 MeV

#### Fission tag

Active target in liquid scintillator + photo multiplicator (PM)

We can track the origin of a signal :

- Fisson fragments
- Beta decay

### **Neutrons induced fission and FIPPS**



#### The steps of the fission induced by fission

### What has been done so far?

- Measures with a calibration source (<sup>152</sup>Eu)
- Measures with <sup>235</sup>U and <sup>233</sup>U in 2018 and 2019 (other experiments are planed, using <sup>245</sup>Cm)
- Pre-analysis has already been done
- Analysis of the data is ongoing (without machine learning for now)

## **Data and analysis**

What the data are, what analysis do we perform on it ? What are the issues ? What do we struggle with ?

## The $\gamma - \gamma$ matrix and $\gamma - \gamma - \gamma$ cube

Several gamma are emitted during a cascade Around 9 for fission





### A closer look at the data



Spectrum obtained for (<sup>235</sup>U, n<sub>th</sub>)

#### A closer look at the data





The  $\gamma - \gamma$  matrix for <sup>235</sup>U

A zoom on a peak from the data obtained with a source of <sup>152</sup>Eu

## Data analysis

#### Main goal

Extract the intensities of the gamma rays in coincidence : fitting

#### How is it done?

Fitting of peaks on 1D spectrum after dimensional reduction by gating, noise subtraction and projection



#### **Gating procedure**

# **ML techniques**

How ML can help us ? For what task exactly ?

#### What architecture for a neural network?









Simulation of the clovers in GEANT4, running on CCIN2P3

## Conclusion

• Data with « pollution », hard to treat

• We want to automate the analysis process : ML seems promising

• How to take into account uncertainty on input data, prior knowledge?

• For my thesis : developp a new analysis technique and compare it with the standard approach. Let's code that !