

Machine learning algorithms for the gamma conversion reconstruction in the ClearMind project



Chi-Hsun Sung for the ClearMind Collaboration 26/09/2022



www.cea.fr

# Cea Outline



- ClearMind project: Background, Objectives & Detector Principles
- Training data preparation: Geant4 simulation
- Event reconstruction
- Conclusion

# **ClearMind Project & Detector Design**



**Readout Board** 

- Fast detector for TOF-PET:
  - Coincidence time resolution: <100 ps (FWHM)
  - 511-keV y-ray interaction 3D resolution: a few mm



 $\rightarrow$  Detector with **monolithic**, large surface, PbWO<sub>4</sub> crystal as the optical window of the MCP-PMT

шШ

> 20

-10

-20

★511 keV v

 Photons Reco.

-20

- → **Direct deposition** of the photocathode
- → Transmission line readout board
- → **SAMPIC** digitization module



- M. Follin et al., 2021, NIM A, 1027, p. 166092

# ClearMind Project & Detector Design



MCP-PMT

- Fast detector for TOF-PET:
  - Coincidence time resolution: <100 ps (FWHM)</p>
  - 511-keV  $\gamma$ -ray interaction 3D resolution: a few mm



## ClearMind Prototype Components I





## ClearMind Prototype Components II





#### Amplifier 20dB\*2 (IJCLab)









## Training data preparation

## Gamma Interaction Simulation



- Geant4 v.10.7
- Physics list:

G4EmPenelopePhysics with default particle range cut

- Lead tungstate (PbWO<sub>4</sub>):
  - Z<sub>eff</sub>: 75.2
  - Density: 8.28 g/cm<sup>3</sup>
  - Attenuation length: 8.7 mm
  - Thickness: 5 mm (~50% gamma interaction)
- Theoretical probability (511 keV) of
  - Photoelectric absorption: 42.7%
  - Compton scattering: 51%
  - Rayleigh scattering: 6.3% matching NIST XCOM



# **Optical Photon and Photocathode Simulation**



- 4.5<mark>⊱10<sup>3</sup></mark> Events All photons <u>Photon production</u> Scintillation: 330 photons/MeV 4 • Cherenkov 3.5 – M. Follin, et al. (2021) 3 Fast (58.6%): **τ**<sub>f</sub> = 1.79 ns Ο 2.5 Slow (41.4%):  $\tau_{c} = 6.41$  ns Ο 2 Spectrum peak at 400 nm Ο 1.5 - M. Shao, et al. (2001) 1E 0.5 00E 50 100 150 200 250 N Photons Optical photon propagation: ×10<sup>3</sup> Absorption length of PbWO Ο Events - All photons 12 <u>Photon detection</u> **Refractive indexes** 0 Cherenkov 10 8 Photocathode simulation  $\rightarrow$  **QE = 30%** 
  - Photon absorption probability in Bialkali Ο
  - Photoelectron extraction probability Ο
    - Motta *et al.* (2005) - Sung et al. (2022)





# MCP-PMT Simulation







# MCP-PMT Simulation





## **Detector Simulated Performance**









### Gamma Conversion Position Reconstruction

## Training Data Preparation – Simulation















## **2D-Coordinate Reconstruction**

- Statistical method
- Machine learning
  - $\circ \quad \text{Pre-processed input}$
  - Un-processed + pre-processed input

### Gamma 2D Reconstruction Statistical Method





$$x_r = rac{(t_{R,k} - t_{L,k})}{2} imes s \ y_r = rac{\sum_{k=i-1}^{i+1} y_k C_k}{\sum_{k=i-1}^{i+1} C_k}$$

- <u>k: TL number with maximum amplitude</u>
- $t_R$ : time from signal of channel R
- $t_i^{n}$ : time from signal of channel L
- s: propagation speed
- $y_k$ : coordinate of TL<sub>k</sub>
- $\hat{C}$ : charge



### Gamma 2D Reconstruction Algorithms with **Pre-processed** Input



#### Transmission lines





- Algorithms: **Decision tree**, **Neural Network**
- Package: ROOT TMVA v.6.18/04
- Training Samples: 100k events
- Test Samples: 100k events
- Loss function: Mean squared error

|                     | Х                                                | Y                               |
|---------------------|--------------------------------------------------|---------------------------------|
| ClearMind Prototype | C <sub>i</sub> , x <sub>i</sub> , x <sub>r</sub> | C <sub>i</sub> , γ <sub>r</sub> |
| Variable transform  | Gaussian                                         | Normalization                   |

- C<sub>i</sub>: charge on triggered lines
- x: reconstructed x position on each line
- $\dot{x_r}$ ,  $\dot{y_r}$ : reconstructed position using statistical method
- one 511 keV gamma-conversion selection



### Gamma 2D Reconstruction Algorithms with **Un-processed** Input





- Algorithms: Convolutional Neural Network
- Package: Tensorflow/Tensorflow probability
- Training Samples: >1M events
- Test Samples: >1M events

INPUT



$$l_w = \ \log\left(\sqrt{2\pi} \cdot \overbrace{\sigma_i}^{} 
ight) + rac{1}{2} rac{\left(y_i - \hat{y}
ight)^2}{\left(\sigma_i^2
ight)}$$

### 

# 2D Reconstruction Results











## **Depth-of-Interaction Reconstruction**

- Statistical method
- Machine learning
  - Pre-processed input

## Depth-of-Interaction Reconstruction

Gamma-conversion



### Statistical Method (spread of photons)

$$\sigma_x = \sqrt{rac{\sum_{i=1}^{32} \left(x_i - ar{x}
ight)^2 \cdot C_i}{lpha \cdot \sum_{i=1}^{32} C_i}} \;\; \sigma_y = \sqrt{rac{\sum_{i=1}^{32} \left(y_i - ar{y}
ight)^2 \cdot C_i}{lpha \cdot \sum_{i=1}^{32} C_i}}$$

$$lpha = 1 - rac{\sum_{i=1}^{32} C_i^2}{\left(\sum_{i=1}^{32} C_i
ight)^2}$$

- *i*: triggered TL number (1-32)
- x;: reconstructed x per TL
- y;: coordinate of TL

 $-\overline{x},\overline{y}$ : weighted average x- & y-coordinate



### **Machine Learning Method**



- Algorithms: <u>Decision tree</u>, <u>Neural Network</u>
- Package: ROOT TMVA v.6.18/04
- Training Samples: 97k events
- Test Samples: 97k events
- Loss function: Mean squared error

|                    | DOI                              |
|--------------------|----------------------------------|
| Variables          | $C_{i}, \sigma_{x'}, \sigma_{y}$ |
| Variable transform | Normalization                    |



511 keV gamma

SD, mm

1.4

1.2

1.2



Fraction of

outlier

36%

21%

23%



Error: reconstructed - true, mm

23

# Cea Conclusion



• 3D spatial resolution in FWHM To be improved

| X (along the lines) | Y (across the lines) | DOI    |
|---------------------|----------------------|--------|
| 5.5 mm              | 2.0 mm               | 3.5 mm |
|                     |                      |        |

- Sung et al. (2022) arxiv:2209.11587 [physics.ins-det]

- Energy resolution  $\rightarrow$  **Work in progress**
- Time resolution
  - $\rightarrow$  For future detector configuration
  - 1) 10-mm PbWO<sub>4</sub> $\rightarrow$  gamma detection efficiency
  - 2) 2 photodetectors  $\rightarrow$  Cherenkov det. efficiency

**Better DOI estimation & Time resolution** 



#### **Detected photon distribution**





Back up

## Positron Emission Tomography



#### **PET-CT Image**



# Photon Propagation Process

Photon Simulation





Annenkov et al. (2002)



### **Optical Contact of PWO & Gel/Photocathode**



- Optical gel  $\rightarrow$  Total Internal Reflection (TIR) for all wavelength:  $n_1 > n_2$  (with a critical  $\theta$ )
- Direct deposition  $\rightarrow$  TIR reduction in all wavelength (including < 400 nm)







## **Reconstruction - Machine Learning Method**



| Decision Tree                                                                                     |                                                                   |                |                                                                                                                                                                          | ork              |                                                  |                                 |                                 |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|---------------------------------|---------------------------------|
| Train samples                                                                                     | 50k - 592k                                                        |                | Train samples                                                                                                                                                            | 50k - 592k       |                                                  |                                 |                                 |
| Test samples                                                                                      | 50k - 592k                                                        |                | Test samples                                                                                                                                                             | 50k - 592k       |                                                  |                                 |                                 |
| Learning rate                                                                                     |                                                                   | 0.005 - 0.2    | 1                                                                                                                                                                        | Hidden layers    |                                                  | 4 - 6                           |                                 |
|                                                                                                   | Х                                                                 | Y              | DOI                                                                                                                                                                      | Neurons/layer    |                                                  | 100 - 500                       |                                 |
| Var. transform                                                                                    | Gaussian                                                          | Normalization  |                                                                                                                                                                          | Activation func. | RELU                                             |                                 |                                 |
| Variables                                                                                         | C <sub>i</sub> , x <sub>i</sub>                                   | C <sub>i</sub> | $C_{i}, \sigma_{x'}, \sigma_{y}$                                                                                                                                         |                  | Х                                                | Y                               | DOI                             |
| - C: charge on triggered lines                                                                    |                                                                   |                | Var. transform                                                                                                                                                           | Gaussian         | Normalization                                    |                                 |                                 |
| - $\sigma_x$ , $\sigma_y$ : photon spre-<br>- $x_r$ , $y_r$ : reconstructed<br>- one 511 keV gamm | ad in x/y direction<br>position using stat<br>a-conversion select | istical meth   | $\inf_{\mathbf{h} \in \mathbf{G}} \begin{cases} x_r = \frac{(t_{R,k} - t_{L,k})}{2} \times s \\ y_r = \frac{\sum_{k=1}^{i+1} y_k C_k}{\sum_{k=1}^{k-1} C_k} \end{cases}$ | Variables        | C <sub>i</sub> , x <sub>i</sub> , x <sub>r</sub> | C <sub>i</sub> , y <sub>r</sub> | $C_{i'} \sigma_{x'} \sigma_{y}$ |



Dropout

## **Reconstruction - Machine Learning Method**



#### Table 4.2: Training parameters of DNN model

Configuration Simplified Detector CM Prototype Coordinates х Y DOI X Y DOI Parameters Train samples (events) 592k 50k 119k 100k 100k 97k Test samples (events) 592k 50k 119k 100k 100k 97k Hidden layers 6 5 4 6 4 4 Neurons per layer 300 500 300 100 300 100 RELU Activation function Batch size 10 64 32 10 10 10 Variable transform Normalization Normalization Gaussian Gaussian Variables Charge, Charge; Charge; Charge; Charge<sub>i</sub> Charge;  $\sigma_x$  $\sigma_x$  $X_{\bar{I}}$  $X_i$ **VR**  $\sigma_v$  $X_R$  $\sigma_v$ Strategy I Learning rate 5.e-4 1.e-3 1.e-3 5.e-4 5.e-4 5.e-4 Convergence steps 34 15 15 34 9 9 L2 None L2 None Regularization None None  $5 \times 10^{-6}$ 0 0  $5 \times 10^{-6}$  $1 \times 10^{-1}$  $1 \times 10^{-6}$ Weight decay Momentum 0.5 0 0 0.5 0 0 10% 0 0 10% 0 0 Dropout Strategy II Learning rate 2.e-5 2.e-5 2.e-5 2.e-5 1.e-4 1.e-4 34 20 20 34 14 9 Convergence steps L2 Regularization None None L2 None None  $1 \times 10^{-6}$ 0 0  $1 \times 10^{-6}$  $1 \times 10^{-6}$ Weight decay 1×10<sup>-</sup> Momentum 0.5 0 0 0.5 0 0 Dropout 10% 0 0 10% 1% 1% Strategy III Learning rate 9.e-6 1.e-5 1.e-5 9.e-6 1.e-6 1.e-6 24 35 40 24 19 14 Convergence steps L2 L2 Regularization None None None None Weight decay  $1 \times 10^{-6}$ 0 0  $1 \times 10^{-6}$  $1 \times 10^{-6}$  $1 \times 10^{-6}$ 0.5 0 0 0.5 0 0 Momentum Dropout 2% 0 0 2% 2% 2% Strategy IV Learning rate 1.e-6 1.e-6 5.e-7 24 Convergence steps 24 49 Regularization L2 L2 None Weight decay  $1 \times 10^{-6}$  $1 \times 10^{-6}$ Momentum 0.5 0.5 0 2.% 2% 0 Dropout Strategy V Learning rate 1.e-7 49 Convergence steps None Regularization Weight decay  $1 \times 10^{-6}$ 0 Momentum

0

| Configuration          | Sim                          | Simplified Detector |                    |          | CM Prototype        |                     |  |
|------------------------|------------------------------|---------------------|--------------------|----------|---------------------|---------------------|--|
| Parameters             | X                            | Y                   | DOI                | х        | Y                   | DOI                 |  |
| Train samples (events) | 592k                         | 50k                 | 75k                | 100k     | 100k                | 97k                 |  |
| Test samples (events)  | 592k                         | 50k                 | 75k                | 100k     | 100k                | 97k                 |  |
| Maximum trees          | 2000                         | 2000                | 500                | 3000     | 2500                | 2000                |  |
| Maximum tree depth     | 100                          | 30                  | 10                 | 10       | 1000                | 100                 |  |
| Seperation type        | RegressionVariance GiniIndez |                     | RegressionVariance |          |                     |                     |  |
| Shrinkage factor       | 0.01                         | 0.01                | 0.1                | 0.005    | 0.01                | 0.01                |  |
| Tree pruning method    |                              |                     | CostCon            | plexity  |                     |                     |  |
| Pruning strength       | 50                           | 30                  | 20                 | 80       | 500                 | 300                 |  |
| Variable transform     | Gaussian                     | Normalization       |                    | Gaussian | Normalization       |                     |  |
| Variables*             | Chargei                      | Charge <sub>i</sub> | Chargei            | Chargei  | Charge <sub>i</sub> | Charge <sub>i</sub> |  |
|                        | $X_{\tilde{t}}$              |                     | $\sigma_x$         | $X_{i}$  | <i>YR</i>           | $\sigma_x$          |  |
|                        |                              |                     | $\sigma_{v}$       | XR       |                     | $\sigma_v$          |  |

Table 4.1: Training parameters of GBDT model

\* i indicates the all TL numbers

\_



- Better time resolution with event selection  $\rightarrow$  <u>still can't distinguish the events with Cherenkov</u>
- The difference in time resolution  $\rightarrow$  to be investigated (events with many triggered TLs)