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In the H → 𝛾𝛾 analysis, dominant backgrounds are : 𝛾𝛾 + Jets, 𝛾 + Jets, Multi Jets (MJ)

• The agreement between Data and Monte Carlo (MC) simulated samples for 𝛾 + Jets and MJ is 

not satisfying and the statistics is too low for the training of subsequent discriminants.

➡  What if we use data directly to describe those samples ?

• We would like to improve the data driven approach used in the previously published 

analyses using this technique.

GAN based data-driven technique to estimate background processes with a misidentified object in 
collider events. We will showcase this technique for the 𝛾 + Jets background process of the H → 𝛾𝛾 
analysis.

Introduction
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➡  Many analysis already use data driven background estimation.  
By reverting the cut on the min photon ID, one needs either to get rid 
of the photon ID variable or to generate a new min photon ID !


• This procedure was used in published analysis from CMS 
experiment [1], new ID was generated by :

1. Deriving a 1D probability density function (PDF) from the 
misidentified photon ID distribution


2. Generating a random min photonID following this PDF, in the 
signal region but below the max photonID


3. However correlations are not preserved

In an event each photon is given a score (photon ID) representing its likelihood to be a photon. Control region in data 
based on photon ID is used to replace MC 𝛾 + Jets / MJ samples (better agreement, more statistics).


➡  Need one photon with very low photon ID : probably a misidentified photon  (as opposed to a prompt photon )γ γ
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I. A data driven estimation of the background

[1] Measurements of ttH production and the CP structure of 
the Yukawa interaction between the Higgs boson and the top 

quark in the diphoton decay channel, CMS collaboration

https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2003.10866


• All this procedure is relying on key assumptions :

 Features independent from the photons of the events  

are behaving identically in signal and control regions

 Events in the control region are 𝛾 + Jets or MJ events  

(true for 96% of the events in MC)

 Photon with min photon ID is misidentified  

(always true for MJ, true 96.2% of the time for 𝛾 + Jets)

 photon ID is not correlated with other features of the 

photon (pT, η, ɸ)


• Additional drawback : need to reweight the events. 
Differences in kinematic features between control and signal 
region. New weights computed using MC but always some 
subjectiveness in the choice of features.

➡  We propose a new method to generate a suitable photon (not only ID) taking into account 
these correlations thanks to ML and more specifically GAN (Generative Adversarial Networks)
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II.a - Generative Adversarial Networks (GANs)
Would it be possible to create an algorithm capable of learning underlying correlations and capable of 
generating a sample statistically independent from the training sample ?


Goodfellow et al. suggested a model consisting of two neural networks competing against each other :

• the “discriminator” sorts samples between real and generated ones - i.e. discriminates fakes

• the “generator” tries to produce samples which will fool the discriminator
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• Usually, monitoring the loss of a neural network is enough to evaluate its 
performance. It is not the case for a GAN where both networks need to perform 
well against the other so their loss stays flat.


➡ We need to set up a more elaborate evaluation procedure
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In our case we use a conditional version of a GAN and 
we train on the misidentified photon (ID, pT, η, ɸ) :
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II.b - Evaluation procedure
• To evaluate the performance of a given model, we rely on different metrics computed for each 

training epoch on the training sample and on a validation sample :

 χ2 metric :





nk : sum of the weights of GANed events in bin k

Nk : sum of the weights of original events in bin k

χ2 =
#bins

∑
k=1

(nk − Nk)2

N2
k
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 Log Likelihood metric :





nk : sum of the weights of GANed events in bin k

Nk : sum of the weights of original events in bin k


For the NLL we histogram our events in 4D : 

- transverse momentum of misidentified photon 


- pseudorapidity of misidentified photon 

-  of diphoton pair over its mass

- ID of misidentified photon 


Takes into account correlations by construction

−2 ln(Λ) = − 2
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∑
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1 generation per event

• Seeing how the fluctuations decrease, we decide to go to 100 generation per event


• Then we can find epochs where the model is reaching minima for these metrics and take 
a closer look at its performance

10 generations per event

•  (see slide 9) estimation is statistically limited creating fluctuations in the NLL. These 
fluctuations can be reduced by increasing the number of generation per event :
pk
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III.a - Optimization of training
Performance of a GAN (and neural network in general) is affected by the way it is trained and by 
what are called hyperparameters. Here are some of the hyperparameters we optimize :


 Batch size : Each epoch is a training over the full training sample and this sample can be divided 
in batch. Help to reduce the fluctuations of the training but could stop on local minima.


 Learning rate : Coefficient applied when updating the weights of the networks. With a high LR 
we make bigger steps toward the optimal weight distribution but with a risk to go over it.


 Gradient descent optimiser : Algorithm to update the weights toward their optimal distribution. 
Some allows to converge quickly but can switch between multiple distributions and others can 
focus on converging toward one optimal distribution only.


 Noise on labels during training : Instead of identifying a MC photon with label 1 and a GANed 
photon with label 0, we add X% noise on this value. Help the GAN converge and stabilise.


 Latent space dimension : The generator needs random vector of given size as input to 
generate values. 12

III.  Generating a full object (misidentified photon)



• Example of hyperparameter selection
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•  Test to which extend the 
training benefits from a 
larger training sample
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•  Trying to find the correct set of observables to train our GAN, we can clearly see 
how hiding information from the network affects its ability to learn correlations
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• Discrepancies for low pT, low photonID and 
also in the η gaps, a better preprocessing 
could help


• Preprocessing the input data using a 
quantile transformation

➡ Transformation helps the GAN recover the gaps in η and the core of the ID and pT distributions

Quantile Transformation 
used in preprocessing

Example from scikit-learn’s documentation
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IV.b - Applying GAN to MC control region
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IV.b - Applying GAN to MC control region
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• Distance correlation coefficients computed to estimate any correlation between observables 
(not only linear correlations)


➡ Matrices look almost identical
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IV. Conclusions and outlooks
• We developed an evaluation procedure to test the GAN’s performance and 

pick the best performing one


• Thanks to GAN we can generate a misidentified photon mimicking the 
behaviour of an object passing the photon selection criteria


• The produced sample can be used for any H → 𝛾𝛾 analysis


• This method can be used as a general tool to generate other objects


• Next steps : 

- Publication of the general method

- Apply the procedure on data to generate a new 𝛾 + Jets background 

sample for H → 𝛾𝛾 analysis
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➡  By picking several random inputs and generating several times each output,  
 we average over the random space

Generating several times per event
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Generating 1 ID per event Generating 100 ID per event
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Other way to look at correlation between pair of variables. Plot events in 2D histograms 
and compute the average (and standard deviation) over the y values per x bin.

�0:09

�0:08

�0:07

M
ea

n
ID

∂∂‚

Full MC

GANed

1023 ⇥ 101 4 ⇥ 101 6 ⇥ 101

pT∂‚
[GeV]

0:08

0:09

St
d
ID

∂∂‚
Full MC

GANed

�0:09

�0:08

�0:07

�0:06

M
ea

n
ID

∂∂‚

Full MC

GANed

10�2 10�1 100

pT‚∂‚

m‚∂‚

0:08

0:09

0:10St
d
ID

∂∂‚

Full MC

GANed

40

42

44

46

M
ea

n
p T

∂‚
[G

eV
]

Full MC

GANed

�2 �1 0 1 2
”

∂∂‚

11

12

13

14

St
d

p T
∂‚

[G
eV

]

Full MC

GANed

35

40

45

M
ea

n
p T

∂‚
[G

eV
]

Full MC

GANed

102

pT‚ [GeV]

7:5

10:0

12:5

15:0

17:5

St
d

p T
∂‚

[G
eV

]

Full MC

GANed



24

Improving the training for generation of the full object

We can upscale the training in different ways : using larger layers, adding layers, training for more 
epochs, …

➡ Each of these tests increase the performance of the GAN but the training time as 
well. Need to fix the limit where better performance is not worth the training time.


