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Introduction

GAN based data-driven technique to estimate background processes with a misidentified object in
collider events. We will showcase this technique for the y + Jets background process of the H = yy

analysis.
In the H — yy analysis, dominant backgrounds are : yy + Jets, y + Jets, Multi Jets (MJ)

 The agreement between Data and Monte Carlo (MC) simulated samples for y + Jets and MJ is
not satisfying and the statistics is too low for the training of subsequent discriminants.

Example of H — yy event (Signal) Example of y + Jets event (Bkg) Example of MJ event (Bkg)

Y

= \What if we use data directly to describe those samples ?

 We would like to improve the data driven approach used in the previously published

analyses using this technique.
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l. A data driven estimation of the background

In an event each photon is given a score (photon ID) representing its likelihood to be a photon. Control region in data
based on photon ID is used to replace MC y + Jets / MJ samples (better agreement, more statistics).

= Need one photon with very low photon ID : probably a misidentified photon y (as opposed to a prompt photon y)

min(IDy1, IDy?)

= Many analysis already use data driven background estimation.
By reverting the cut on the min photon ID, one needs either to get rid

',x;oo of the photon ID variable or to generate a new min photon ID !
L . . . .
‘&o\@a@‘\ : * This procedure was used in published analysis from CMS
TN g experiment [1], new ID was generated by :
hot :
szle(z:t(i)gn A 5 1. Deriving a 1D probability density function (PDF) from the
\\ g misidentified photon ID distribution
','s"'.\o*‘ i 2. Generating a random min photonl|D following this PDF, in the
| "‘6@@5 |  Control Region signal region but below the max photonlD
KRS |y Enriched 3. However correlations are not preserved

max(IDy1, IDy2) [1] Measurements of ttH production and the CP structure of

-1 photon 1 - i ]
(probably a jet) selection (probably a photon) the Yukawa interaction between the Higgs boson and the top

4 quark in the diphoton decay channel, CMS collaboration



https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2003.10866
https://arxiv.org/abs/2003.10866

» All this procedure is relying on key assumptions :
M Features independent from the photons of the events
are behaving identically in signal and control regions
[ Events in the control region are y + Jets or MJ events
(true for 96% of the events in MC)

M Photon with min photon ID is misidentified
(always true for MJ, true 96.2% of the time for y + Jets)

] photon ID is not correlated with other features of the
photon (p, n, $)

* Additional drawback : need to reweight the events.
Differences in kinematic features between control and signal
region. New weights computed using MC but always some
subjectiveness in the choice of features.

= \We propose a hew method to generate a suitable photon (not only ID) taking into account

Mean ID

Ymin

0.4}

0.3}

1.0
0.8

0.6

0.4

1 l l 1

5000
4000
_3000
{2000

-1 1000

] | ] ] ] |
80 100 120
pr, [GeV

these correlations thanks to ML and more specifically GAN (Generative Adversarial Networks)
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Il. Training a GAN

ll.a - Generative Adversarial Networks (GANSs)

Would it be possible to create an algorithm capable of learning underlying correlations and capable of
generating a sample statistically independent from the training sample ?

> Goodfellow et al. suggested a model consisting of two neural networks competing against each other :
* the “discriminator” sorts samples between real and generated ones - i.e. discriminates fakes
* the “generator” tries to produce samples which will fool the discriminator
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In our case we use a conditional version of a GAN and
we train on the misidentified photon (ID, pt, n, ®) :
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* Usually, monitoring the loss of a neural network is enough to evaluate its

performance. It is not the case for a GAN where both networks need to perform

well against the other so their loss stays flat.

= \We need to set up a more elaborate evaluation procedure

5000



Il.b - Evaluation procedure

* To evaluate the performance of a given model, we rely on different metrics computed for each
training epoch on the training sample and on a validation sample :

Nk : sum of the weights of GANed events in bin k
Nk : sum of the weights of original events in bin k

B Full MC |
[ GANed

o i
..:10 ++++++++++++++++ -l-_H.-!— : J.II_ |
g0 Tl
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> Log Likelihood metric :
#bins

M
—2In(A) = =2 ) Ni-1og(py, pi=
= zn

Nk : sum of the weights of GANed events in bin k

]
i
1

N

Nk : sum of the weights of original events in bin k

For the NLL we histogram our events in 4D :
- transverse momentum of misidentified photon Pr,

- pseudorapidity of misidentified photon ,

. . . P
- pt of diphoton pair over its mass e

m

- ID of misidentified photon ID}, v

Takes into account correlations by construction
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» D, (see slide 9) estimation is statistically limited creating fluctuations in the NLL. These
fluctuations can be reduced by increasing the number of generation per event :
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* Seeing how the fluctuations decrease, we decide to go to 100 generation per event

5000

Epoch

 Then we can find epochs where the model is reaching minima for these metrics and take

a closer look at its performance
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lll. Generating a full object (misidentified photon)
lll.a - Optimization of training

Performance of a GAN (and neural network in general) is affected by the way it is trained and by
what are called hyperparameters. Here are some of the hyperparameters we optimize :

M Batch size : Each epoch is a training over the full training sample and this sample can be divided
N batch. Help to reduce the fluctuations of the training but could stop on local minima.

M Learning rate : Coefficient applied when updating the weights of the networks. With a high LR
we make bigger steps toward the optimal weight distribution but with a risk to go over 1.

M Gradient descent optimiser : Algorithm to update the weights toward their optimal distribution.
Some allows to converge quickly but can switch between multiple distributions and others can
focus on converging toward one optimal distribution only.

M Noise on labels during training : Instead of identifying a MC photon with label 1 and a GANed
photon with label O, we add X% noise on this value. Help the GAN converge and stabilise.

M Latent space dimension : The generator needs random vector of given size as input to
generate values. 1




Latent space dimension :
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MC simulation

in the signal
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Trying to find the correct set of observables to train our GAN, we can clearly see
how hiding information from the network affects its ability to learn correlations
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Example from scikit-learn’s documentation

* Discrepancies for low pr, low photonlD and e
also in the n gaps, a better preprocessing
could help

» Preprocessing the input data using a ] g
quantile transformation 1 -

] GANed

] GANed -

Quantile Transformation
used In preprocessing

fakePhoEta fakePhoEta

= Transformation helps the GAN recover the gaps in n and the core of the ID and pr distributions

15



IV.b - Applying GAN to MC control region

min(ID)ﬂ, IDx2)

photon
selection

GANed Ctrl Control Region
e \VC Signal Yy Enriched

max(IDy1, IDy2)

-1 photon 1
(probably a jet) selection (probably a photon)




IV.b - Applying GAN to MC control region R Eor
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= Natrices look almost identical
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IV. Conclusions and outlooks

 We developed an evaluation procedure to test the GAN’s performance and
pick the best performing one

 Thanks to GAN we can generate a misidentified photon mimicking the
behaviour of an object passing the photon selection criteria

 The produced sample can be used for any H — yy analysis

* This method can be used as a general tool to generate other objects

 Next steps:

- Publication of the general method
- Apply the procedure on data to generate a new y + Jets background

sample for H = yy analysis
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= By picking several random inputs and generating several times each output,

we average over the random space
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Generating 1 ID per event Generating 100 ID per event

NLL loss evolution
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Other way to look at correlation between pair of variables. Plot events in 2D histograms
and compute the average (and standard deviation) over the y values per x bin.
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Improving the training for generation of the full object

We can upscale the training in different ways : using larger layers, adding layers, training for more
epochs, ...
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= Each of these tests increase the performance of the GAN but the training time as
well. Need to fix the limit where better performance is not worth the training time.
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