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https://indico.in2p3.fr/event/27507/


Computing at LHC during High Luminosity era

Þ Physics run to start in 2029
Þ Increase in event complexity:
~ 200 proton-proton interactions 𝝁 per collision
Þ Increase in data taking rate
Þ ATLAS detector upgrades: new Inner Tracking detector Itk
Þ Brings unprecedented challenges for software and computing

Þ Track reconstruction of charged particle (tracking) = A very CPU-Intensive stage
Þ Classical algorithm like CKF hard to run effitiently on accelerators for ATLAS

Graph Neural Network (GNN) are very suitable to deal with sparse data of the detector:
Þ To learn geometric pattern of the tracks
Þ Proof of principle by the ExaTrkx Project
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Graph Neural Network (GNN)-based
algorithms for track reconstruc;on

Graph construction:
Represent detector
data (hits) as a graph

GNN stage
Edge clasifica9on: by 
scoring each edges to be a 
segment of a track or no 

Track reconstruc9on
Filtering GNN-predicted graph
Post process reconstruc9on
algorithm
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Results on trackML

Generation (Pythia8): 1000 𝑡 ̅ 𝑡 events from pp collisions
• 𝑠 = 14 𝑇𝑒𝑉, 𝜇 = 200 pile-up (HL-LHC condition) 
modeling using A3 tune
Simulation: Generic detector simulated with fast 
simulation of ACTS framework
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GNN performances

Track reconstruc9on performances

Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC, C.Rougier et al., vCHEP 2021 
Physics and Compu9ng Performance of the Exa.TrkX TrackML Pipeline, D. Murnane et al., vCHEP 2021
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https://www.epj-conferences.org/articles/epjconf/pdf/2021/05/epjconf_chep2021_03047.pdf
https://cds.cern.ch/record/2767568?ln=fr


Results on ATLAS ITk GNN performances

Track reconstruction performances

=> GNN-based algorithms now appear as compe88ve solu8ons for the future genera8on of charged par8cle track
reconstruc8on algorithms which will have to be put into produc8on for the HL-LHC

ATLAS simulated sample: 𝐭 ̅ 𝐭 𝐰𝐢𝐭𝐡 𝛍 = 𝟐𝟎𝟎 𝐚𝐭 𝒔 = 𝟏𝟒 𝑻𝒆𝑽
Define target particles:
pT > 1 GeV
No secondaries
No electron
At least 3 space-points

Þ Simulated data very close of what we expect for HL-LHC

ATLAS ITk Track Reconstruc9on with a GNN-based pipeline, C.Rougier et al., CTD 2022
Graph Neural Network track reconstruc9on for ATLAS ITk , D. Murnane et al., IML 2022
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https://cds.cern.ch/record/2815578
https://cds.cern.ch/record/2809518/files/ATL-ITK-SLIDE-2022-119.pdf


Sources of limita;ons of GNN performances

GNN poor performances are for edges in the barrel of the strip detector

Þ Lower spatial space-point resolution in the STRIP BARREL
Þ Existence of ghost space points
Þ Graph topology: mean connec9vity specifically high and and 
Þ True vs Fake edges ra9o x10 9mes lower to other region
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Sources of limitations of GNN performances

GNN poor performances are for edges in the barrel of the strip detector

Þ Lower spatial space-point resolution in the STRIP BARREL
Þ Existence of ghost space points
Þ Graph topology: mean connec9vity specifically high and and 
Þ True vs Fake edges ra9o x10 9mes lower to other region
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Message Passing Neural Network (MPNN)
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AB?C:B<$Used as model for the prevously described results on TrackML and ATLAS ITk
Described by P. Ba\aglia et al. (deepmind)

IMPORTANT : 
• Map and reduce separetly incoming and outcoming edges
• Make sense in our tracking problem with graph with an 

asymetric topology between incoming and outcoming edges
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https://arxiv.org/abs/1612.00222


« deep » vs recurrent GNN models

« Make it deep » P. Ba\aglia, LTD 2022
L Interac9on Network Layers
L different instances of Edge Net and Node Net
Avoid vanishing gradient problem (typical with RNN)
GNN should approximate a be\er func9on

Þ Converge very much faster
Þ Overfi`ng: Performance for TRAIN dataset (eff ~99% , purity ~92%)
Þ Poten9ally solved by data augmenta9on
Þ Poten9ally improve performances
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Heterogeneous GNN models
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STRIP

PIXEL

BARREL EC+EC-

The detector is divided in 6 volumes

Þ Heterogenity only implemented at encoder stage for now
Þ Hard to synchronize the training of the different MLPs
Þ The MLP have to project in similar latent space at the same 9me to allow
Þ message passing expressivity powerness

The idea : to encode with dedicated MLPs each region
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Graph Transformer & posi;onal encodings

Adding topological or detector-geometry-oriented
positional encodings to the current encodings of 
detector hits in euclidian space

Þ One-hot encoding the region for nodes and edges
and project this encoding to a latent space size-
like it with an MLP

ÞAttention mechanisms : Better aggregation
function ?

A Generaliza9on of Transformer Networks to Graphs with Xavier Bresson at 2021 AAAI Workshop on Deep 
Learning on Graphs: Methods and Applica9ons (DLG-AAAI’21).
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https://arxiv.org/abs/2012.09699
https://personal.ntu.edu.sg/xbresson
https://deep-learning-graphs.bitbucket.io/dlg-aaai21/index.html

