

Enhanced GNN models for track reconstruction with ATLAS ITk

IN2P3/IRFU Machine Learning workshop 2022

Sylvain Caillou

Laboratoire des 2 Infinis - Toulouse (L2IT-IN2P3), Université de Toulouse, CNRS, UPS

Computing at LHC during High Luminosity era

- \Rightarrow Physics run to start in 2029
- \Rightarrow Increase in event complexity:
- ~ 200 proton-proton interactions μ per collision
- \Rightarrow Increase in data taking rate
- \Rightarrow ATLAS detector upgrades: new Inner Tracking detector Itk
- \Rightarrow Brings unprecedented challenges for software and computing

- \Rightarrow Track reconstruction of charged particle (tracking) = A very CPU-Intensive stage
- \Rightarrow Classical algorithm like CKF hard to run effitiently on accelerators for ATLAS
- Graph Neural Network (GNN) are very suitable to deal with sparse data of the detector:
- \Rightarrow To learn geometric pattern of the tracks
- \Rightarrow Proof of principle by the ExaTrkx Project

Graph Neural Network (GNN)-based algorithms for track reconstruction

Represent detector data (hits) as a graph Edge clasification: by scoring each edges to be a

segment of a track or no

Track reconstruction Filtering GNN-predicted graph Post process reconstruction algorithm

Results on trackML

Generation (Pythia8): 1000 $t^{-}t$ events from pp collisions • s = 14 TeV, $\mu = 200$ pile-up (HL-LHC condition)

modeling using A3 tune

Simulation: Generic detector simulated with fast simulation of ACTS framework

Towards a realistic track reconstruction algorithm based on graph neural networks for the HL-LHC, C.Rougier et al., vCHEP 2021

Physics and Computing Performance of the Exa.TrkX TrackML Pipeline, D. Murnane et al., vCHEP 2021

Results on ATLAS ITk

- pT > 1 GeV
- No secondaries
- No electron

At least 3 space-points

 \Rightarrow Simulated data very close of what we expect for HL-LHC

p_ [GeV]

ATLAS ITk Track Reconstruction with a GNN-based pipeline, C.Rougier et al., CTD 2022 Graph Neural Network track reconstruction for ATLAS ITk , D. Murnane et al., IML 2022

=> GNN-based algorithms now appear as competitive solutions for the future generation of charged particle track reconstruction algorithms which will have to be put into production for the HL-LHC

Sources of limitations of GNN performances

GNN poor performances are for edges in the barrel of the strip detector

- \Rightarrow Lower spatial space-point resolution in the STRIP BARREL
- \Rightarrow Existence of ghost space points
- \Rightarrow Graph topology: mean connectivity specifically high and and
- \Rightarrow True vs Fake edges ratio x10 times lower to other region

Sources of limitations of GNN performances

Degree of nodes (mean and std)

3.06	12.52	3.06
±2.99	±10.88	<u>+</u> 2.99
4.86	9.35	4.86
<u>+</u> 4.59	±10.93	<u>+</u> 4.59

True vs Fake edges ratio

0.0224	0.0056	0.0224
0.0229	0.0123	0.0229

GNN poor performances are for edges in the barrel of the strip detector

- \Rightarrow Lower spatial space-point resolution in the STRIP BARREL
- \Rightarrow Existence of ghost space points
- \Rightarrow Graph topology: mean connectivity specifically high and and
- \Rightarrow True vs Fake edges ratio x10 times lower to other region

Message Passing Neural Network (MPNN)

« deep » vs recurrent GNN models

« Make it deep » P. Battaglia, LTD 2022
L Interaction Network Layers
L different instances of Edge Net and Node Net
Avoid vanishing gradient problem (typical with RNN)
GNN should approximate a better function

\Rightarrow Converge very much faster

- \Rightarrow Overfitting: Performance for TRAIN dataset (eff ~99% , purity ~92%)
- \Rightarrow Potentially solved by data augmentation
- \Rightarrow Potentially improve performances

Heterogeneous GNN models

£ Hì

 $ENC^{v}(MLP)$

 $\{r_i, \varphi_i, z_i\}$

 $ENC^{e}(MLP)$

 $\{\Delta r_k, \Delta \varphi_k, \Delta z_k, \Delta \eta_k\}$

Encode stage

10

- \Rightarrow Hard to synchronize the training of the different MLPs
- \Rightarrow The MLP have to project in similar latent space at the same time to allow
- message passing expressivity powerness \Rightarrow

4

1

EC-

Graph Transformer & positional encodings

Adding topological or detector-geometry-oriented **positional encodings** to the current encodings of detector hits in euclidian space

- ⇒ One-hot encoding the region for nodes and edges and project this encoding to a latent space sizelike it with an MLP
- ⇒Attention mechanisms : Better aggregation function ?

<u>A Generalization of Transformer Networks to Graphs</u> with <u>Xavier Bresson</u> at <u>2021 AAAI Workshop on Deep</u> <u>Learning on Graphs: Methods and Applications (DLG-AAAI'21)</u>.