Context	and	Defintions
000000		

Conclusion 000

LinacNet

A new architecture for Linear Accelerator Surrogate Model

Emmanuel Goutierre

H. Guler¹, C. Bruni¹ J. Cohen², M. Sebag²

¹Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)

²Laboratoire Interdisciplinaire des Sciences du Numérique (LISN)

Monday 26th September 2022

E. Goutierre

Context and	Defintions	
000000		

Conclusion 000

Table of Contents

Context and Definitions

2 Surrogate Models

Context and	Defintions
00000	

Conclusion 000

Table of Contents

Context and Definitions

2 Surrogate Models

3 Conclusion

Context	and	Defintions
00000	0	

Conclusion 000

ThomX: A Compact Compton Source

Figure: Linac of ThomX.

ThomX • X-ray source by Compton backscattering

- Compact Accelerator (70m²)
- In commissioning at the IJCLab since May 2021

Linac

• Accelerate the electron beam up to 50 MeV

PhD's goal

Use machine learning to tackle the problem of adjusting the Linac parameters to fulfill the beam requirements for the transfer line.

E. Goutierre

LinacNet

Context and	Defintions
000000	

Conclusion 000

Accelerator Tuning

\mathcal{A} : Controllable Parameters

- 15 controllable parameters
 - Laser position and size
 - Gun and Cavity phase and field
 - Solenoid Fields
 - Steerer Fields
 - Quadrupoles Fields

\mathcal{B} : Hidden Parameters

- Mechanical Misalignment
- Unknown initial particle distribution
- Slow drift of electromagnetic elements

$\mathcal{O}: \, \text{Observables}$

- 17 Observables
 - Position and Charge at BPMs
 - Charge at ICTs
 - Position and Size at Screen
 - Charge at Faraday Cup

F: Objective function

- Quality of the beam
- Function of (A, B)

Goal

- Optimize A depending on B to get minimal F with the aid of $\mathcal O$
- Currently : manual tuning, heavy load on expert

Context and	Defintions
000000	

Conclusion 000

Context: Machine and Simulation Tools

On the Machine

- B unknown
- Only partial information with O
- Inot directly measurable

Computation time on the machine

- **()** Set A and measure $O : \sim 1$ sec.
- 2 Estimation of $F: \sim 10$ min.
- Collective Schedule

On the Simulator

- B can be specified (90 parameters)
- **②** Output of the simulator $C \in \mathbb{R}^{6 \times 17}$
- F is a function of C

Computation time on the simulator

- **(**) Computation of C: \sim 10min.
- I F and O given by C
- Individual Schedule, can run in parallel

Simulations performed with Astra¹

¹Pöplau, Van Rienen, and Floettmann, "3D space charge calculations for bunches in the tracking code Astra".

Context and	Defintions
000000	

Objective: Automatic Accelerator Tuning

With the aid of simulation data and real data :

Inverse Problem

Find an estimate of B_{Linac} with real data (A_i, O_i) and simulation data (A_j, B_j, O_j)

Control Problem

Find
$$A^* = \underset{A \in \mathcal{A}}{\operatorname{arg\,min}} F_{Linac} \left(A, \widehat{B}_{Linac}\right)$$

Context and	Defintions
000000	

Methods

The exploration-optimization accelerator tuning

- $\textcircled{\ } \textbf{Learn} \ \widehat{\textbf{\textit{F}}} \simeq \textbf{\textit{F}}_{\rm simulator}$
- **2** Learn $\widetilde{F} \simeq F_{Linac} \left(A, B_{Linac} \right)$

• Estimate
$$\widehat{B}_{Linac} = \underset{B \in \mathcal{B}}{\arg\min d} \left(\widehat{F}(., B) - \widetilde{F} \right)$$

• Adjust A such that
$$A = \arg\min_{A \in \mathcal{A}} \widehat{F}\left(A, \widehat{B}_{Linac}\right)$$

Originality of the method

- Incorporate simulation data and real data
- Tackle the control problem on the real machine

Context and	Defintions
000000	

Conclusion 000

Table of Contents

Context and Definitons

Context and	Defintions
000000	

Conclusion 000

First Model

Figure: MLP as a surrogate model of a Linac

Multi Layer Perceptron

- $\bullet~$ 10k simulations sampling ${\cal A}$ and ${\cal B}$
- Minimization of the L2 loss

Context and	Defintions	
000000		

LinacNet

Figure: LinacNet with 6 modules corresponding to 6 detectors on the Linac

LinacNet

- Split input and output according to their position in the Linac
- Neural Network Architecture reflecting a Linac architecture
- Each Module models one Diagnostic

Figure: One module of ThomNet

ThomNet

- Track the full distribution of particles
- Inspired by Qi et al., "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation"

Context and	Defintions
000000	

Conclusion •00

Table of Contents

Context and Definitions

2 Surrogate Models

Context a	and	Defintions
000000		

Conclusion

Results

- Adequate architecture speed up the training and gives better results
- Precision of the same orders than the diagnostics installed on ThomX

Challenges

- Training of a of modular model
- Large GPU memory requirements if not careful
- Performance for the optimization task to be tested

Context and	Defintions	
000000		

Questions?