

MADNESS

Maximum-A-posteriori solution with Deep generative NEtworks for Source Separation

> in2p3 ML Workshop, Paris 26th September, 2022

<u>Biswajit Biswas</u>, Eric Aubourg, Alexandre Boucaud, Axel Guinot, Junpeng Lao, Cécile Roucelle

Surveys and Challenges

Large survey of Space and Time (LSST) at Vera Rubin Observatory:

- Ground-based
- constrain Dark Energy
- 3.2 billion pixel camera
- 6 observation bands in visible range

more depth + area of coverage \Rightarrow More statistics!

Surveys and Challenges

Large survey of Space and Time (LSST) at Vera Rubin Observatory:

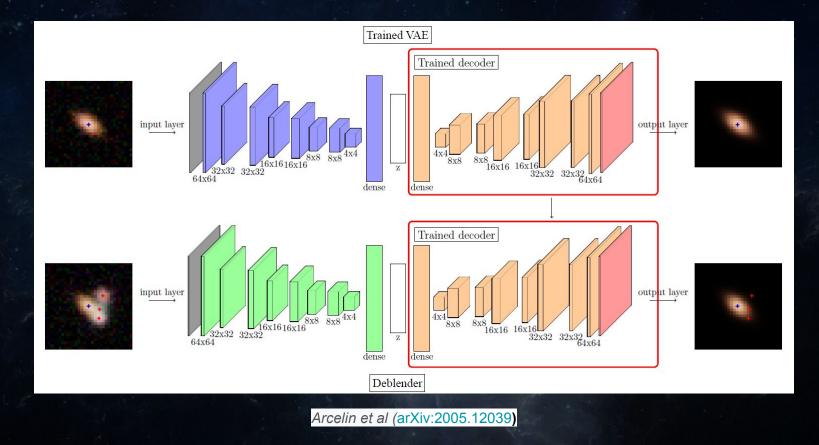
- Ground-based
- constrain Dark Energy
- 3.2 billion pixel camera
- 6 observation bands in visible range

more depth + area of coverage \Rightarrow More statistics!

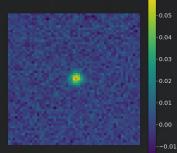
greater depth means more complex data!

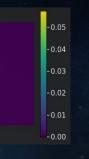
~ Galaxies (60% in LSST) are expected to overlap (blending) in images due to increased depth

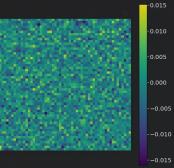
ML for Deblending



Denoising (Single source)







Input image (y)

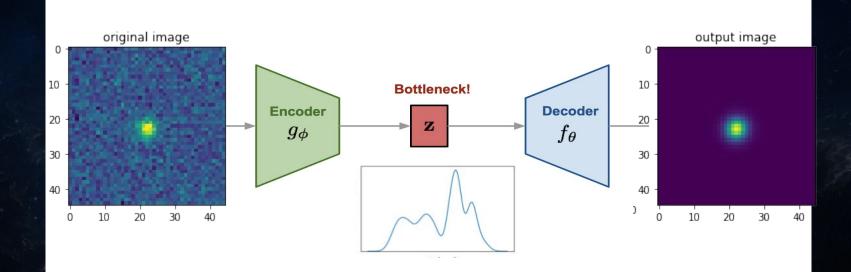
Predicted image (x)

Residual (y-x)

 $x^* = \arg \min_{x} -\log p(y|x) - \log p(x)$ $x^* = \arg \min_{x} \frac{||y - x||^2}{2\sigma_{noise}^2} - \log p(x)$

Where, x^* is the maximum a posteriori probability (MAP) estimate

Train VAE as generative model



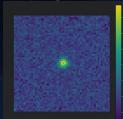
For example: Lanusse et al (<u>arXiv:2008.03833</u>)

Training: $-\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} \log p_{\theta}(\mathbf{x}|\mathbf{z}) + D_{\mathrm{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{\theta}(\mathbf{z}))$

Reconstruction term

Regularization term

MAP estimate in latent space



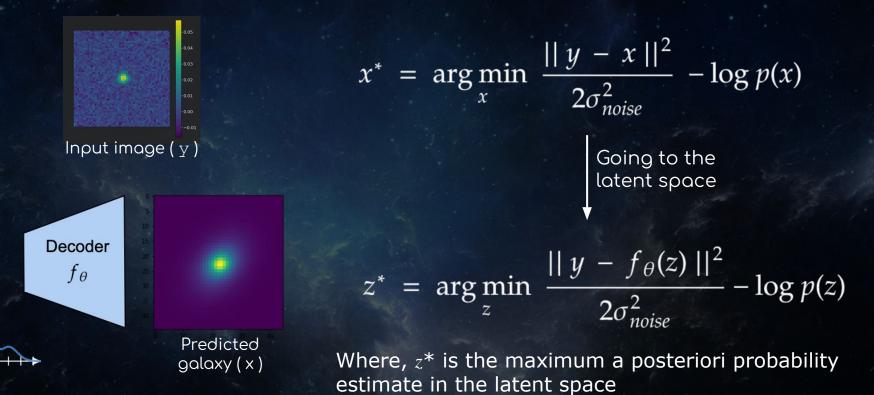
Input image (y)

 $x^* = \arg \min_{x} \frac{||y - x||^2}{2\sigma_{noise}^2} - \log p(x)$

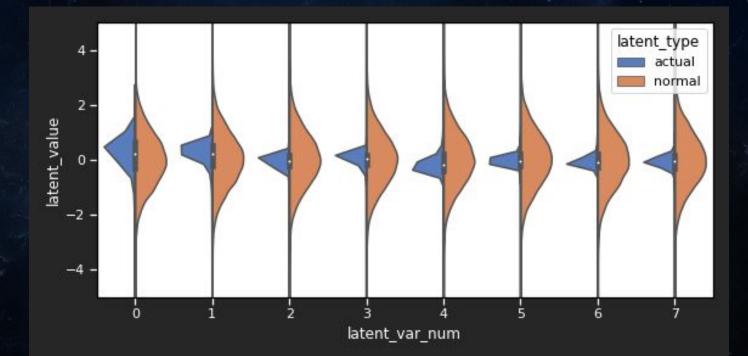
Predicted galaxy (x)

MAP estimate in latent space

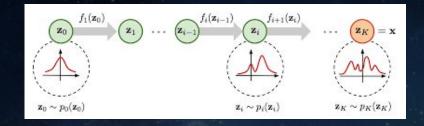
 \boldsymbol{z}

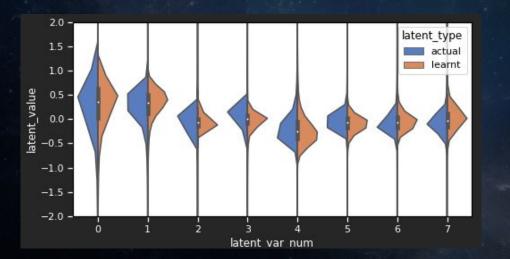


How to choose a prior?



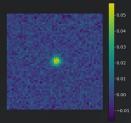
Normalizing flow





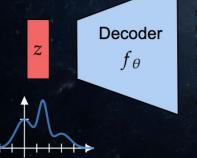
- The Normalizing Flows is trained to map the underlying latent space distribution
- We can evaluate log prob in the learned latent space distrib.

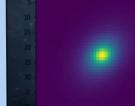
Minimization



Input image (y)

Start with random z Do gradient descent in the latent space to minimize the objective function





= $\arg \min_{z} \frac{||y - f_{\theta}(z)||^2}{2\sigma^2}$ -Predicted galaxy (x)

 Z^*

Where, z^* is the maximum a posteriori probability estimate in the latent space Page 8

 $\log p(z)$

Deblending (Multiple sources)

 $Z = \{z_i \mid z_i \text{ being the latent space representation of } i^{th} \text{ galaxy} \}$

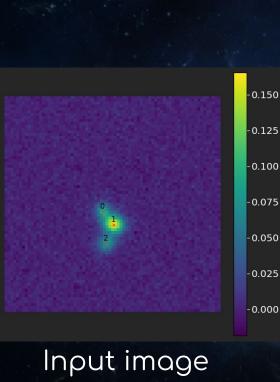
 $Z^* = \arg\min_{Z} -\log p(y|Z) - \log p(Z)$

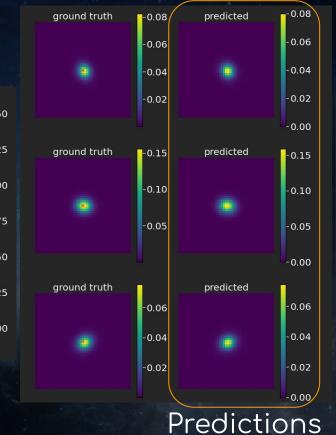
Reconstructed field

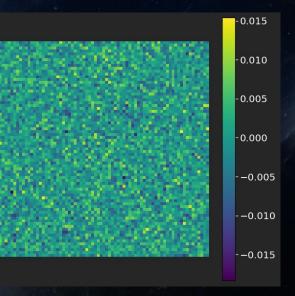
Probability that predictions are galaxies!

$$Z^* = \arg \min_{Z} \frac{||y - \sum_{i} f_{\theta}(z_i)||^2}{2\sigma_{noise}^2} + \sum_{i} \log p(z_i)$$

Deblending Example

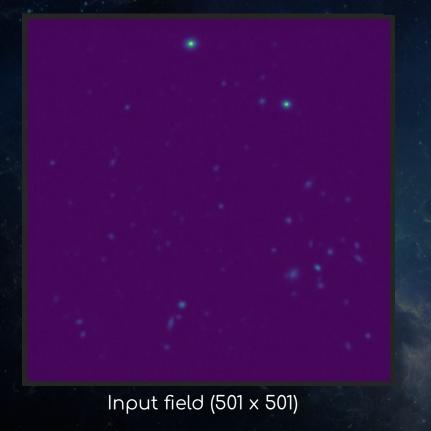


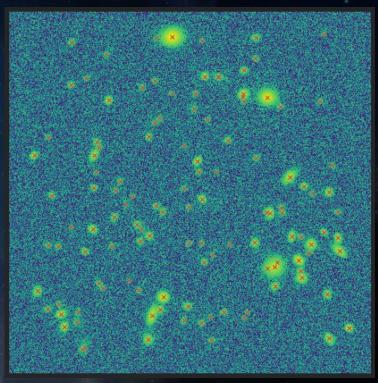




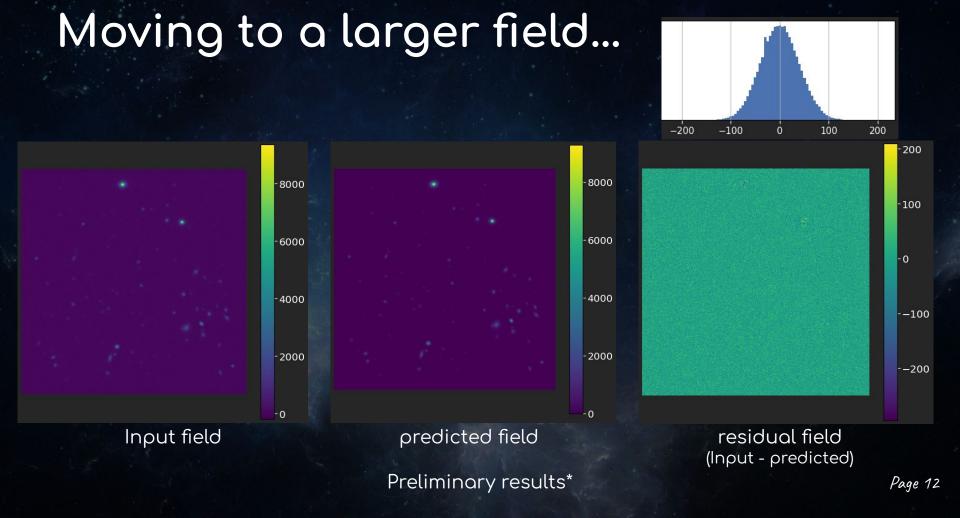
Residual image (input - predictions)

Moving to a larger field...

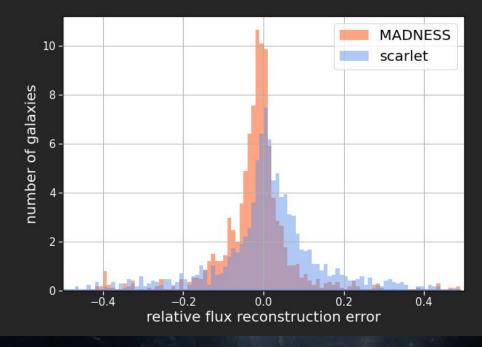




Sinh⁻¹ (Input field)



Compare with SOTA



Preliminary results*

Conclusion and Future work

- Developed source separation algorithm using VAEs, NF
- Deblending performance at-par with SOTA
- Next steps:
 - Handle artifacts in real data
 - Evatulate systematics in science results, eg. probes such as weak lensing
 - Paper in progress (code to be available soon)

Thank you!