

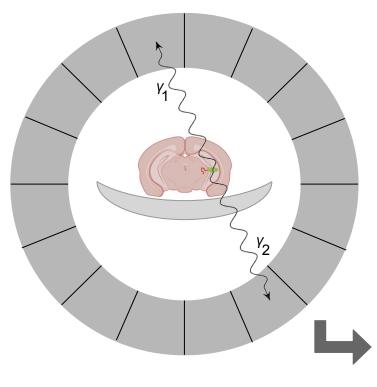
Calibration and evaluation of a machine learning algorithm for β+ brain imaging using an intracerebral micro probe

S.El ketara^{a,b}, L .Ammour^c, J. Baudot^d, S. Bouvard^e, M. Dupont^f, F. Gensolen^f, M. Kachel^d, J. Laurence^f, P. Lanièce^{a,b}, C. Morel^f, P. Pangaud^f, L. Zimmer^d, M.-A. Verdier^{a,b}

^aUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France

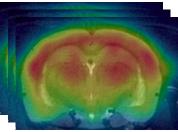
^bUniversité Paris Cité, IJCLab, 91405 Orsay France

^cNantes Université, CHU Nantes, F-44000 Nantes, France


^dUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

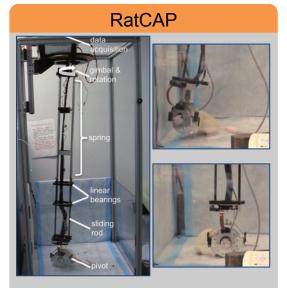
^eUniversité Claude Bernard Lyon 1, CERMEP-Imagerie du vivant, CNRS, INSERM, Hospices Civils de Lyon, Lyon, France

^fAix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France


i

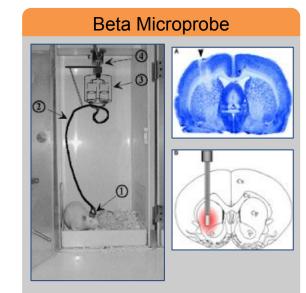
Context: Preclinical neuroimaging with micro-PET

micro-Positron Emission Tomography (micro-PET):


- Use injected β^+ radioisotopes
- Detects gamma rays from β^+/e annihilation
- High sensitivity (pmol)
- Requires anesthesia
 - \rightarrow What is the effect of the **anesthesia**?
 - → Perform simultaneous behavior studies and real time neuroimaging

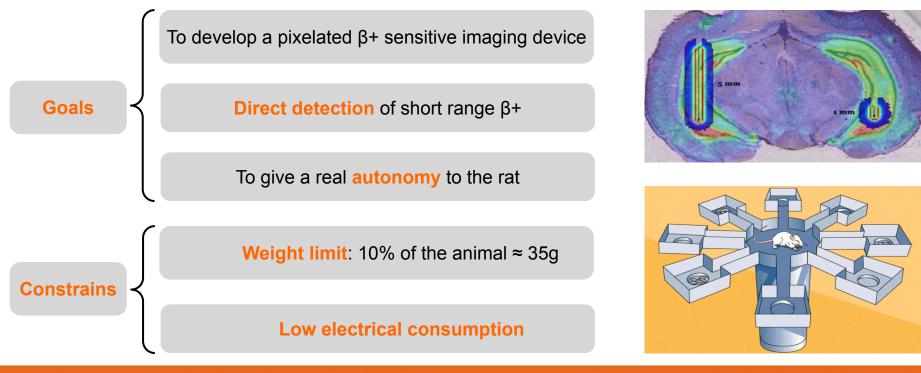
Stakes:

- Understand anesthesia effects on neuroimaging
- Perform simultaneous behaviour and neuroimaging

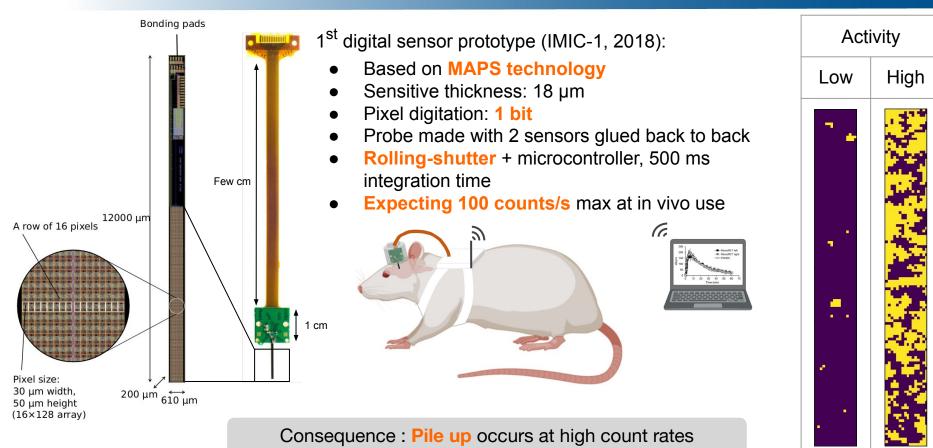


Schulz et al., Nature methods, 2011.

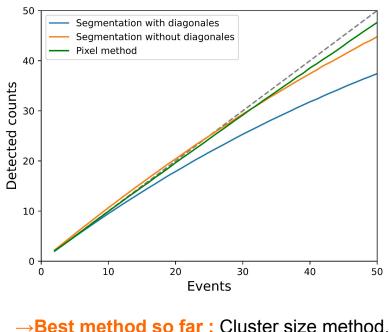
Motion tracking


Spangler-Bickell et al., Phys. Med. Biol., 2016.

Pain et al., PNAS, 2002.



MAPSSIC Project



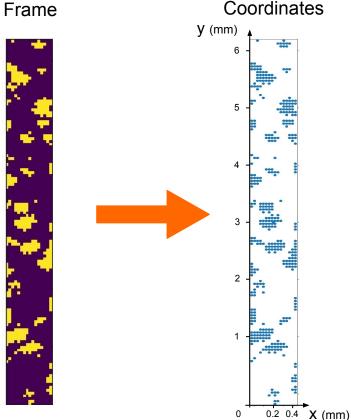
Context: Neuroimaging in awake and freely moving rats

Previously explored methods¹:

- 1. Simple segmentation = contouring (with/without diagonals)
- 2. Cluster size method: Estimate counts number using the number of activated pixels over the mean number of activated pixels per clusters:

activated pixels

Cluster number =


mean # of pixels per cluster

Advantage : Allows a limited loss in sensitivity

Drawback : No event localization

1. Luis Ammour. Développement d'une sonde intracérébrale à pixels actifs pour l'imagerie bêta du cerveau du rat libre de ses mouvements. Université Paris Saclay (COmUE), 2018. Français.

Coordinates

AFFINITY PROPAGATION algorithm²:

- Based on iterative message passing between Data points •
- Implemented in Scikit-Learn

2. Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007

Sending responsibility

r(i,k)

Data point i

competing candidate

exemplar k

a(i,k')

candidate

exemplar k

Affinity propagation algorithm

Sending availability

a(i.k

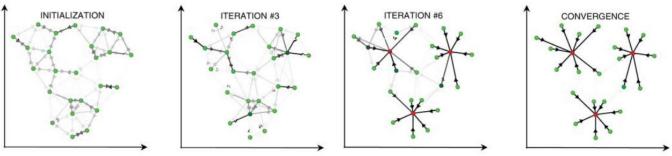
Data point i

r(i',k)

supporting data point i'

candidate

exemplar k



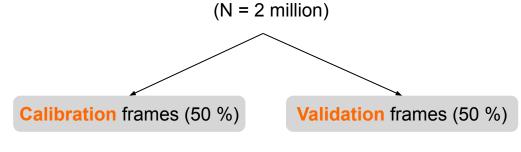
- Based on iterative message passing between Data points
- Implemented in Scikit-Learn
- 2 types of passing messages:
 - responsibility r(i,k):
 - availability a(i,k):
- Determine the **number** and the **position** of clusters
- No cluster number needed as input
- Each cluster is composed by an *exemplar* (which better represents the distribution) and targets (points associated to an exemplar)

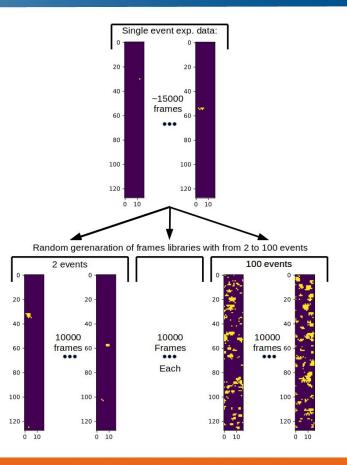
2. Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007

Affinity propagation algorithm

Brendan J. Frey and Delbert Dueck, "Clustering by Passing Messages Between Data Points", Science Feb. 2007

- Influence parameter :
 - **Preference** : Calculated number of clusters is **directly influenced** by the *preference* value

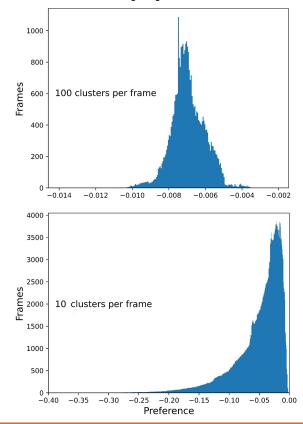

 \rightarrow Need for **calibration** of the algorithm : Search for the optimal *preference* value for AP clustering on frames containing from 1 to 100 clusters



Affinity propagation algorithm - Data generation

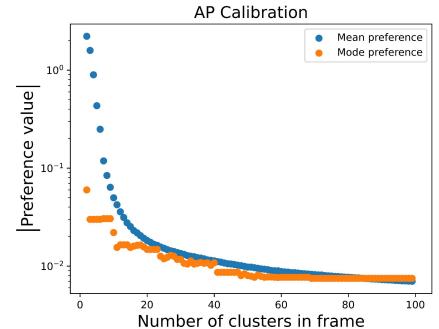
Data generation:

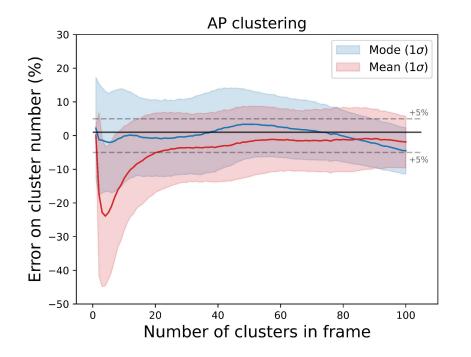
- From experimental frames (N ≈ 15 000)
 - Obtained with 18F source
 - \rightarrow (liquid source in contact with the sensor)
 - Containing exactly 1 cluster
- Random generation of 1 to 100 clusters frames



Affinity propagation algorithm - Calibration

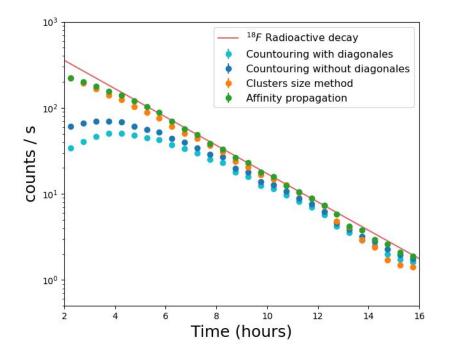
Data processing from AP calibration runs:


- Determination of the optimal *preference*:
 - AP runs on calibration frames scanning the previously determined *preference* range
 - Mean and Mode of the distribution preference values leading to the smallest error between calculated and actual cluster number for a given frame
 - Gaussian draw of a new *preference* value if the previous does not converge to an answer (400 times maximum)



Run of AP algorithm on the validation data set with both mean and mode *preference* values :

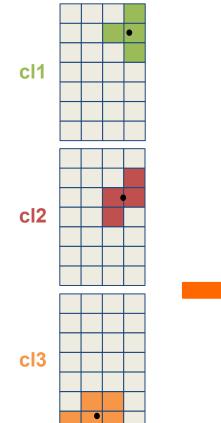
- Actual operating conditions
- No a priori on the cluster number per frame.
 →Rough estimation of the cluster number based on the number of activated pixels
- Run of AP algorithm with the selected *preference* values according to the estimated cluster number (taking into account the estimation bias).


Results on validation frames:

- **≥ 50 clusters/frame**, the mode *preference* performed better than the mean *preference*
- ≤ 50 clusters/frame, mean preference shows a drop in accuracy
- Using the mode *preference* gives an error not greater than 5% no matter the number of clusters per frame

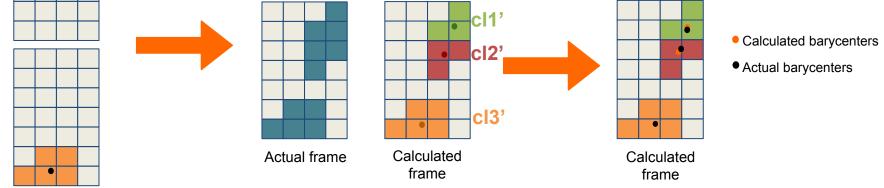
Mix of AP algorithm with <u>mean</u> and <u>mode</u> preference values according to the estimation

AP algorithm **performed on experimental Data** from ¹⁸F radioactive decay measurement:



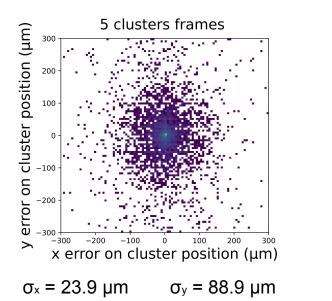
- Achieved linearity for the expected count rates for in vivo measurements
- Calculation time varies from few milliseconds to 0.5 seconds per frame

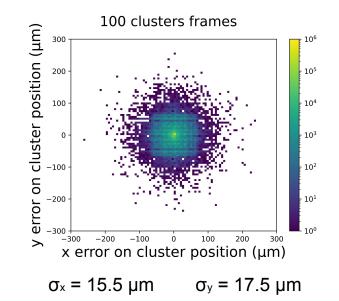
Results compatible with in vivo measurements



Affinity propagation algorithm - Spatial performances

- Determination of the barycenter for each real cluster
- Determination of the barycenter for each calculated cluster
- Error on weighted average barycenters


 $cl1_{err} = (cl1 - (3 \times cl2' + 1 \times cl1' + 0 \times cl3'))/4$ $cl2_{err} = (cl2 - (1 \times cl2' + 3 \times cl1' + 0 \times cl3'))/4$ $cl3_{err} = (cl3 - (0 \times cl2' + 0 \times cl1' + 5 \times cl3'))/5$



Spatial study : Error on cluster barycenter

- Errors on x and y axis: mean σ of 16.5 μ m and 26.2 μ m
 - \rightarrow 95% error equal or smaller than pixels size (2 σ)
- Error (≈ µm) < explored structures (ie: rat striatum ≈ mm)

The use of Affinity propagation algorithm:

• Offers a fast and reliable clustering of counts in frames

• Improves the counting of events

• Allows for an accurate spatial localization of events

Perspectives:

- Calibrate the algorithm with Data from the **new sensor prototype**
- Impact of other parameters —>improve computing time
- Apply AP for *in vivo* measurements (e.g. for non homogeneous frames)

New Sensor prototype and electronics developed and being tested

Acknowledgments

Laboratoire de Physique des 2 Infinis

MAPSSIC collaboration

Institut Pluridisciplinaire Hubert CURIEN

ermap imagerie du vivant

Cnrs

PHENIICS

Samir Fl ketara Philippe Lanièce Marc-Antoine Verdier

Franck Agnese Jérôme Baudot Maciek Kachel

Mathieu Dupont **Fabrice Gensolen** Jérôme Laurence **Christian Morel** Patrick Pangaud

Luis Ammour

Sandrine Bouvard Luc Zimmer

THANKS FOR YOUR ATTENTION