ML for hadronic jets in ATLAS DNN and GNN

ATLAS ML Team at LPSC:

- Guillaume Albouy
- Ana Peixoto
- Thomas Wojtkowski
- P-A D

Experimental context

• Proton collision at LHC

list of hadrons 4-vectors the hadronic flow

• Tracks

Calorimeter E clusters

to form

reconstructed 4-vectors

("reco constituent")

- No 1-to-1 correspondence between (true) hadrons and reco constituents
 - calorimeter is too coarse
- 1-to-1 correspondence between hadron jets and reco jets
 - Simulation can have reference quantities for reco jets

Measuring jets

- We MUST calibrate jet level quantities : E, mass, angles
- But this is not enough !
 - need precise substructure variables
 - better jet type identification
 - hadron composition matters
 - big source of uncertainties

Crucial for many physics analysis at LHC

Must optimize the energy flow within the jets : constituent calibration

Jet constituent calibration with GNN

Calibrating jet constituents

• There is no 1-to-1 correspondence between reco constituents and truth hadrons

What reference to calibrate against ?

 \Rightarrow **jets** : physical objects with a truth reference from MC

- Build very small (R=0.2) jets
 - small enough (fine angular resolution) & big enough (contains several constituents)
- Put jet constituents on a graph
 - nodes == constituents angular position
 - account for spatial proximity between constituents
 - (graph from Delauney triangulation)

Graph Neural Network

- Predict node-level quantities
 - constituent correction factors
- Training on graph-level constraints
 - Loss depends on Jet energy, mass, angles

22-09-27

GNN application at collision event level

GNN application at collision event level

GNN setup

- Use QCD di-jet full simulation events
 - include constituents & jet features + truth jet reference
 - O(500M) graphs available for training
- Graph sizes vary greatly : from 1 to ~50 nodes
- Features :
 - ~15 node features : constituent kinematics+detector info
 - ~10 graph features : jet kinematics & variables+ evt info
 - (1 edge features : angular distance)

GNN setup, technicalities

- Framework : own GNN code build on keras/tensorflow
 - graph structure represented by arrays of indices of edges&Nodes
 - using TF's "segment" functions
 - ex: tf.unsorted_segment_sum(data, sumIndices, N)
- Data flow : custom solution
 - O(100M) examples x N features > available memory
 - ROOT ntuple \rightarrow read by uproot \rightarrow numpy array \rightarrow tensorflow
 - Other better technical solutions ?
- Computing : using CC-IN2P3 GPU farm
 - NN convergence in ~few hours

First Results – Loss function

- For now, only **Energy** and **rapidity** corrections considered
- Smooth convergence with LGK loss

$$L = \beta |1 - \frac{E_{pred}}{E_{true}}| + e^{-(1 - \frac{E_{pred}}{E_{true}})^2/2\alpha}$$

- plus rapidity term
- **LGK** loss seems better than classic MSE to fit values from a distribution

22-09-27

Ana Peixoto & P-A Delsart

First results – Correction factors

Basic checks performed:

(iet numNodes>1) AND (taste==2)&(e>1000) Predicted E scale factors 12000 10000 • Energy correction as expected: 8000 - Majority around 1.1 Unexpected fraction at 0.5 6000 (=enforced minimum correction) 4000 mostly related with jets with low number of edges or far from truth reference 2000 Is the NN correctly suppressing Pile-Up noises? 0.25 1.25 0.00 0.50 0.75 1.00 1.50 1.75 2.00

Ana Peixoto & P-A Delsart

E corr factor

First results – Correction factors

Basic checks performed: **Predicted rapidity corrections**

 Low width peak around 0 as expected

 More epochs -> Narrower peak for rapidity

Performance evaluation

How to evaluate the calib performances beyond the loss ?

- Check physics jets energy & mass response
 - rebuild jets with GNN-calibrated constituents
 - distribution of ratios E_{calib}/E_{true} and M_{calib}/M_{true}
 - consider scale and resolution
- Do this in many E and/or M bins
 - then plot scale vs bin center

E calibration in physics R=1.0 jets

- Energy scale is well reconstructed
 - almost as well as standard ATLAS calib
- E resolution is improved
- some other rapidity (~η) bins are more difficult

Ana Peixoto & P-A Delsart

Mass calibration in physics R=1.0 jets

- Mass scale is improved w.r.t no calib
 - NOT just due to E scaling !
 - GNN learnt more
- M resolution is improved w.r.t std ATLAS calib
 - specially at high mass

Conclusions

- Hadronic calibration based on graphs of constituents from small jets
- GNN trained to do node-level regression from graph-level constraints
- Promising results : physics performance comparable to jet-level, dedicated jet calibration
 - just a beginning : many other performance metrics to monitor
- Difficulties & challenges
 - technical ones mostly solved, maybe far from optimal
 - how to improve calib in particular region of phase space ?
 - how to disentangle GNN/ML effects from physics effects ?

Technical details & difficulties

Back-up

Same loss, different behaviour

Same GNNs

- training stopped at different epochs
 - gnn2 has ~15 more epochs
- Loss identical : diff ~0.025%
- YET : response diff ~ 2%

