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ML for hadronic jets in ATLAS 
DNN and GNN

ATLAS ML Team at LPSC:
● Guillaume Albouy 
● Ana Peixoto
● Thomas Wojtkowski
● P-A D
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Experimental contextExperimental context

● Proton collision at LHC
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Hadronic jetsHadronic jets

initial parton
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Hadronic jetsHadronic jets

Parton shower

hadrons
(pions, kaons...)

initial parton
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Hadronic jetsHadronic jets

initial parton

list of hadrons 4-vectors
the hadronic flow
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Hadronic jetsHadronic jets

initial parton

hadron jet

R

Form groups of 4-vectors within radius R 
in angular space (R=0.4 or R=1.0)
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Hadronic jetsHadronic jets

Calorimeters

Inner Tracker

Combine
● Tracks
● Calorimeter E clusters

to form 
reconstructed 4-vectors

("reco constituent")
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Hadronic jetsHadronic jets
● No 1-to-1 correspondence 

between (true) hadrons and 
reco constituents
– calorimeter is too coarse

● 1-to-1 correspondence 
between hadron jets and reco 
jets
– Simulation can have reference 

quantities for reco jets

reco jet
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Measuring jetsMeasuring jets

● We MUST calibrate jet level quantities : E, mass, angles
● But this is not enough !

– need precise substructure variables
● better jet type identification

– hadron composition matters
● big source of uncertainties

    Must optimize the energy flow within the jets : constituent calibration  

Crucial for many 
physics analysis at LHC
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Jet constituent calibration with GNN
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Calibrating jet constituentsCalibrating jet constituents
● There is no 1-to-1 correspondence between reco constituents and truth hadrons

What reference to calibrate against ?
⇒ jets : physical objects with a truth reference from MC

● Build very small (R=0.2) jets
– small enough (fine angular resolution) & big enough (contains several constituents)

● Put jet constituents on a graph
– nodes == constituents angular position 
– account for spatial proximity between constituents
– (graph from Delauney triangulation)
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Graph Neural NetworkGraph Neural Network

● Predict node-level quantities 
– constituent correction factors

● Training on graph-level constraints
– Loss depends on Jet energy,mass, angles

GNN

Matched R=0.2
truth jets
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GNN application at collision event levelGNN application at collision event level

Use as input to physic 
small-R or large-R
jet finding...

Input 
constituents list

Calibrated
constituents

?
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GNN application at collision event levelGNN application at collision event level

GNN

Jet finding
R=0.2

GNN

GNN

Use as input to physic 
small-R or large-R
jet finding...

Input 
constituents list

Calibrated
constituents
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GNN structureGNN structure

"embedded vector" in 
a "latent" space

MLP1 average MLP2 MLP3

input node vector
(jet constituent features)

"embedded vectors" 
of neighbour nodes 
in the graph

"Message passing block". 
Can be repeated N times

ouput : calibration 
factors

n0

n1

n2

n0

n1 n2 ni

n0 n0

n0

Classical Message Passing
GNN...
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GNN structureGNN structure

MLP1 w-sum MLP2 MLP3

input node vector
(jet constituent features)

"embedded vector" in 
a "latent" space

"embedded vectors" 
of neighbour nodes 
in the graph

"Message passing block". 
Can be repeated N times

ouput : calibration 
factors

n0

n1 n2 ni

n0 n0

w
01 w
02

w
0i

MLPw

ni

nj

eij

wij

n0

...with "attention"-like weighted
aggregation
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GNN setupGNN setup

● Use QCD di-jet full simulation events
– include constituents & jet features + truth jet reference
– O(500M) graphs available for training

● Graph sizes vary greatly : from 1 to ~50 nodes
● Features :

– ~15 node features : constituent kinematics+detector info
– ~10 graph features : jet kinematics & variables+ evt info
– (1 edge features : angular distance)
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GNN setup, technicalitiesGNN setup, technicalities

● Framework : own GNN code build on keras/tensorflow
– graph structure represented by arrays of indices of edges&Nodes
– using TF's "segment" functions 

● ex: tf.unsorted_segment_sum(data, sumIndices, N)

● Data flow : custom solution
– O(100M) examples x N features > available memory
– ROOT ntuple → read by uproot → numpy array → tensorflow
– Other better technical solutions ?

● Computing : using CC-IN2P3 GPU farm
– NN convergence in ~few hours
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First Results – Loss functionFirst Results – Loss function

For now, only Energy and rapidity 
corrections considered

● Smooth convergence with LGK 
loss

- plus rapidity term
- LGK loss seems better than 
classic MSE to fit values from a 
distribution
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First results – Correction factorsFirst results – Correction factors
Basic checks performed:

Predicted E scale factors 

● Energy correction as expected:
– Majority around 1.1

● Unexpected fraction at 0.5 
(=enforced minimum correction)
– mostly related with jets with low 

number of edges or far from truth 
reference

– Is the NN correctly suppressing 
Pile-Up  noises ?
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First results – Correction factorsFirst results – Correction factors
Basic checks performed:

Predicted rapidity 
corrections

● Low width peak around 0 
as expected
– More epochs -> Narrower 

peak for rapidity
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Performance evaluationPerformance evaluation

How to evaluate the calib performances beyond 
the loss ?
● Check physics jets energy & mass response 

– rebuild jets with GNN-calibrated constituents
– distribution of ratios Ecalib/Etrue and Mcalib/Mtrue

– consider scale and resolution
● Do this in many E and/or M bins

– then plot scale vs bin center

1

"scale"
resolution
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E calibration in physics R=1.0 jetsE calibration in physics R=1.0 jets
● Energy scale is well reconstructed

– almost as well as standard ATLAS calib
● E resolution is improved
● some other rapidity (~η) bins are more 

difficult

ATLAS Work in progress

ATLAS Work in progress
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Mass calibration in physics R=1.0 jetsMass calibration in physics R=1.0 jets

● Mass scale is improved 
w.r.t no calib
– NOT just due to E 

scaling !
– GNN learnt more

● M resolution is improved 
w.r.t std ATLAS calib
– specially at high mass

ATLAS Work in progress

ATLAS Work in progress
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ConclusionsConclusions

● Hadronic calibration based on graphs of constituents from small jets
● GNN trained to do node-level regression from graph-level constraints
● Promising results : physics performance comparable to jet-level, 

dedicated jet calibration
– just a beginning : many other performance metrics to monitor

● Difficulties & challenges
– technical ones mostly solved, maybe far from optimal
– how to improve calib in particular region of phase space ?
– how to disentangle GNN/ML effects from physics effects ?
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Technical details & difficulties
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Back-up
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Same loss, different behaviourSame loss, different behaviour

Same GNNs 
● training stopped at different epochs

● gnn2 has ~15 more epochs
● Loss identical : diff ~0.025%
● YET : response diff ~ 2%

ATLAS Work in progress
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