IN2P3 School of Statistics

Yann Coadou for the SOS organising committee

CPPM Marseille

IN2P3/IRFU Machine Learning workshop APC, 27 September 2022

5School presentation

- Origin:
 - strong demand from IN2P3 community for statistical analysis training
 - usually not much developed during initial training
 - nowadays key ingredient of scientific results production
- Goal: describe, explain and manipulate statistical concepts and tools necessary to perform statistical analysis of data in particle physics, astroparticle physics and cosmology
 - proper usage of tools
 - real impact in day-to-day work
 - competitiveness and visibility in our big collaborations
- Evolution: Over the years, increased part related to machine learning and hands-on sessions
- Target audience: PhD students, postdocs, staff (junior and senior) interested in basic concepts and new tools

- 8th edition of successful biennial series ... after Strasbourg (2008), Autrans (2010– 2016), La Londe-les-Maures (2018), Zoom (2021)
- Back to in-person mode
- 16-20 June 2022 in Carry-le-Rouet (13)
- Attendance: PhD students, postdocs, engineers
- In English (many foreign students in our labs)
- Indico: https://indico.in2p3.fr/e/SOS2022
- General web site: ▶ http://sos.in2p3.fr
- Financial support:

People behind the scene

Organising committee

- Johan Bregeon (LPSC, Grenoble)
 - Éric Chabert (IPHC, Strasbourg)
- Nicolas Chanon (IP2I, Lyon)
- Yann Coadou (CPPM, Marseille) –chair–
- Sabine Crépé-Renaudin (LPSC, Grenoble)
- Romain Madar (LPC, Clermont-Ferrand)
- Guillaume Mention (CEA/IRFU, Saclay)
- David Rousseau (IJClab, Orsay)

Local support at CPPM

Angélique Pèpe, Véronique Roux

School programme

- Three main components:
 - fundamental concepts (statistics, limits, systematics)
 - machine learning: concepts, BDT, deep learning
 - hands-on sessions (statistics, ML)
- Time for discussion:
 - good to be back in-person

	Mon 16	Tue 17	Wed 18	Thu 19	Fri 20
8:30-9:00					Hands-on:
9:00-10:30		Machine learning	Intervals & limits I	Intervals & limits II	advanced machine learning
10:30-11:00	Arrival	Break			
11:00-12:30	Allivai	Boosted decision trees; Metrics	Hands-on: basics machine learning	Deep learning I	CERN quantum technology initiative
12:30-14:00 Lunch					
14:00-15:30	Basic concepts I	Hands-on: basic statistics	Free	Deep learning II	Departure
15:30-16:00	Break			Break	
16:00-17:30	Basic concepts II			Deep learning at colliders	

People in front of the screen

Lectures

- Romain Madar (LPC, Clermont-Ferrand): Basic concepts
- Vincent Barra (LIMOS, Clermont-Ferrand): Machine learning
- Yann Coadou (CPPM, Marseille): Boosted decision trees; metrics
- Nicolas Berger (LAPP, Annecy): Intervals & limits
- Veronica Sanz (Universities of Valencia and Sussex): Deep learning
- Anja Butter (ITP Universität Heidelberg): Deep learning at colliders
- Sofia Vallecorsa (CERN): CERN quantum technology initiative

Hands-on sessions

- Guillaume Mention (CEA/IRFU, Saclay): basics of statistics
- David Rousseau (IJClab, Orsay): Introduction to ML tools
- Veronica Sanz (Valencia and Sussex): advanced machine learning

SPeople watching

SMachine learning @ SOS 2022

- Complete overview of founding principles
- Metrics to evaluate ML algorithms in HEP
- Boosted decision trees
- Deep learning
 - basics of neural networks: empirical risk, gradient descent, backpropagation
 - DNN / CNN / RNN / LSTM
 - autoencoders
 - generative models
 - clustering algorithms
- Deep learning at colliders: top tagging, event generation, detector simulation, unfolding, uncertainty estimation
- CERN QTI: focus on quantum machine learning
- Hands-on

Advice: watch video recording of lectures

- All done with Jupyter notebooks, all available in indico
- Can run locally (install anaconda) or on Google Colab
- Statistics
 - basic python packages (NumPy, SciPy, MatPlotLib)
 - probabilities
 - sampling
 - statistical inference
- Introduction to machine learning
 - dataset handling, features
 - BDT with XGBoost, LightGBM, scikit-learn GBDT
 - hyperparameter optimisation
 - figures of merit
 - variable selection (feature vs. permutation importance)
- Advanced machine learning
 - exploratory data analysis
 - deep networks
 - unsupervised learning with clustering: PCA, k-means, t-SNE, UMAP

SOS 2022: know your audience

- 46 participants (40 survey answers)
 - 39 PhD students (85%)
 - 2 postdocs (4%)
 - 5 engineers (11%)
- No Zoom link during school (but video recording)
 - favour in-person
 - not a showstopper for staff anymore?

You work in (check all relevant boxes)

Answered: 40

A. nuclear physics: 4 (7.84%)

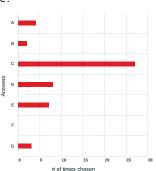
B. theory: 2 (3.92%)

C. particle physics: 27 (52.94%)

D. astro / cosmo: 8 (15.69%)

E. neutrino: 7 (13.73%)

F. private company: 0 (0.00%)


G. other: 3 (5.88%)

if you chose "other", please specify:

Answered: 2

• DAO Engines

- DAQ Engineer
- · Nuclear imaging

SOS 2022: courses balance

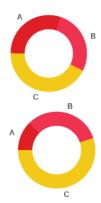
How did you find the balance between basic concepts and advanced methods?

Answered: 40

A. I would have preferred to spend more time on basics: 12 (30.00%)

B. I would have preferred to spend more time on advanced methods: 11 (27.50%)

C. The balance was good: 17 (42.50%)

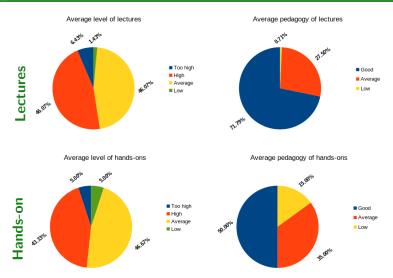

How did you find the balance between lectures and hands-on sessions?

Answered: 40

A. I would have preferred to spend more time on lectures: 5 (12.50%)

B. I would have preferred to spend more time on hands-on sessions: 13 (32.50%)

C. The balance was good: 22 (55.00%)



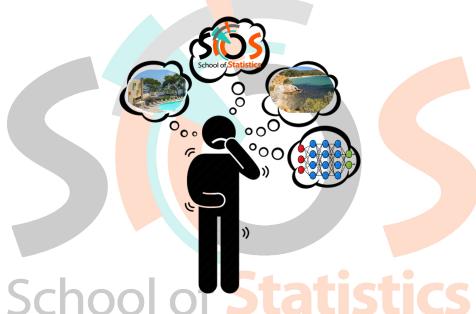
- Right balance between topics
- Hard to have more hands-on, possibly some code examples within lectures (done in limits lecture)

SSOS 2022: courses quality

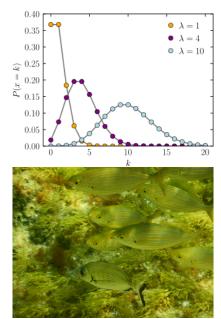
Brainstorming about ways to improve hands-on experience

- Most likely in May 2024:
 - in person
 - one week in a relatively isolated place to foster discussions
 - possibly in Carry again
- Interested in joining the organisation? Come and talk to me!

565 Carry heatmap



SNeurons making decisions...



56 The meanings of "poisson" in Carry

POISSON.

import scipy.stats scipy.stats.poisson