



# Multi-objective optimization for the CMS High Granularity Calorimeter Level 1 trigger

Hakimi Alexandre, LLR Ecole Polytechnique CNRS Sauvan Jean-Baptiste, LLR Ecole Polytechnique CNRS

# IN2P3/IRFU Machine Learning Workshop

LLR, Ecole Polytechnique Hakimi Alexandre

27/09/2022



- ML: optimize internal parameters
- but external hyperparameters?
  - number of neurons, regularization etc. for DNN
  - tree depth, number of boosting rounds etc. for BDTs
- Finding the **optimal** values is **hard** 
  - grid search, random search
  - bayesian optimisation ⇒ good at finding the optimum for one objective function (e.g. efficiency of the model)
- But when you have **multiple objectives**?



- ML problems may have other objectives:
  - minimizing resource usage (e.g. FPGA implementation)
  - efficiencies for different classes, etc.
  - often **competing** with each others
- "Easy" solution: combine them into one objective function:
  - $\circ \quad Obj = lpha imes obj_1 + eta imes obj_2 + \delta imes obj_3$
  - but the coefficient are arbitrary and there is a loss of information
- Solution: MultiObjective Optimization (MOO)
  - find the set of solutions that define the **best trade-off** between competing objectives



### Dominance

### **Best solution?**

- single objective : easy
- multi-objective: **nondominated** solutions
- > Nondominated if can not improve one objective without degrading another one



#### HGCal Trigger MOO



### Pareto Front



f1 (min)

#### HGCal Trigger MOO







# The CERN LHC and CMS experiment



Collides protons at  $\sqrt{s}$  = 13.6 TeV at very high frequency

 four main experiments: ALICE, ATLAS, CMS and LHCb General purpose detector

- Higgs boson
- Physics at the TeV scale
- New physics?

HGCal Trigger MOO

ML workshop 27/09/2022



# High luminosity LHC



~2030: New phase of the LHC with **high luminosity** 

- more collisions and high pileup (multiplicity of the collisions in the detector)
- **New challenges** : need detector upgrades!
  - For CMS: Improved muon detector and tracker, more granular endcap calorimeter and updated trigger system



# CMS Phase II endcap HGCAL



- increased granularity
- 3D view of showers
- precise timing information

#### HGCal Trigger MOO

#### ML workshop 27/09/2022



- **Trigge**r: selects *interesting* events to be recorded
- Identify physics objects with ML classifiers
- In CMS: implemented on **FPGA** boards
  - Configurable logic
  - **Limited resources**, e.g. Lookup Tables (LUT) for logic
  - Integer or fixed points operations
- Uses inputs from the different CMS subdetectors
  - notably trigger primitives from HGCAL





# HGCAL trigger primitives generation

Particles **shower** and deposit energy in the calorimeter

- This energy is reconstructed in **clusters**
- Variables describing the **shower shape** can be used to discriminate the type of shower
  - transverse profile and longitudinal profile help discriminate between electromagnetic and hadronic showers or low-energy pileup
- Limited throughput to the L1 trigger (128 bits)



### HGCal Trigger MOO

#### ML workshop 27/09/2022

#### Hakimi Alexandre

#### 11/21



# Electromagnetic shower discrimination

- Goal: Discriminate electrons clusters and PU clusters
  - using only HGCAL trigger primitives
- Multi-objective optimization problem
  - maximize performance
  - $\circ$   $\;$  while minimizing the resource usage
  - o and minimizing the throughput usage

### Chosen architecture: XGboost BDTs

- DNNs can be used with similar performance
- Available conversion software for FPGA implementation: <u>conifer</u>



### HGCal Trigger MOO

ML workshop 27/09/2022

#### Hakimi Alexandre

12/21



### **BDTs**

- Boosted Decision Trees : combine weak learners (decision trees) into strong classifier
- Create a tree, measure it accuracy (loss function)
- Boosting: give more weight to misclassified events (residuals) and train new tree





Hyperparameters:

- tree depth
- learning rate: how much change to the weights per iteration
- number of trees/boosting rounds

13/21

### HGCal Trigger MOO

#### ML workshop 27/09/2022



### List of inputs

Most discriminating cluster shape variables in terms of  $\underline{\mathsf{SHAP}}$  values

• game theory technique for explaining the output of ML models





### Inputs quantization

- Inputs need to be quantized into fixed points quantities for the FPGAs
  - between 0 and 16 bits precision (0 means dropped)



HGCal Trigger MOO

ML workshop 27/09/2022

Hakimi Alexandre

15/21



# Model optimization

- **maximize** performance : ROC AUC (above a 80% signal efficiency threshold)
- **minimize** throughput: total number of bits used for input variables
  - also lowers the resources for their computation and BDT model
- minimize model size: number of "splits" in the BDT
  - reduce the amount of resource needed
- Hyperparameters:
  - number of bits for each input (16 params)
  - model complexity parameters (3 params)
    - max tree depth
    - number of boosting rounds
    - learning rate



### Results



The optimal front is converging well across all dimensions An interactive 3D visualisation is available <u>here</u> On the right are highlighted the "solutions": points in the last generations maximizing our objectives



# Results (cont.)





- Each line correspond to an optimal solution
- can pick the one with the most interesting trade-off
- can look at the whole picture
  - some inputs are more 'bit-effective'
  - some can be more 'size-effective'

#### HGCal Trigger MOO



### **Best solutions**

|    | EoT | sho<br>Igth | vzz | 1st<br>lay                                         | firstH_5                                   | Emx_2R  | core<br>Igth | 1stH_1 | meanz | Emx_5  | Emx_4R  | abseta | vee   | vrr  | vpp   | ebm1 | max<br>boost<br>rounds | max<br>depth | eta | n_kept | bits | splits | eff   |
|----|-----|-------------|-----|----------------------------------------------------|--------------------------------------------|---------|--------------|--------|-------|--------|---------|--------|-------|------|-------|------|------------------------|--------------|-----|--------|------|--------|-------|
| 76 | 0   | 1           | 2   | <ul> <li>Only keep ~12 inputs out of 16</li> </ul> |                                            |         |              |        |       |        |         |        |       |      |       |      |                        | 2            | 0.1 | 14     | 55   | 611    | 99.79 |
| 83 | 0   | 0           | 0   |                                                    | • Number of bits used can be reduced a lot |         |              |        |       |        |         |        |       |      |       |      |                        | 4            | 0.1 | 10     | 35   | 2945   | 99.79 |
| 50 | 0   | 1           | 0   |                                                    | Roty                                       | 11      | 146          | 4      | 0.1   | 11     | 33      | 1717   | 99.78 |      |       |      |                        |              |     |        |      |        |       |
| 86 | 0   | 1           | 0   |                                                    |                                            |         | 2            | 9      | 147   | 5      | 0.1     | 12     | 30    | 2973 | 99.77 |      |                        |              |     |        |      |        |       |
| 42 | 2   | 0           | 0   |                                                    |                                            | lorese  |              | iuste  | r uat | a size | 2 01 12 | .8 มเ  | .5    |      | 2     | 10   | 120                    | 5            | 0.1 | 12     | 30   | 2249   | 99.77 |
| 37 | 2   | 0           | 2   | •                                                  | Tota                                       | al size | <30          | 00 sp  | olits |        |         |        |       |      | 8     | 10   | 144                    | 2            | 91  | 13     | 48   | 929    | 99.75 |
| 78 | 1   | 1           | 3   |                                                    | 0                                          | Very sr | mall         | trees  | s (90 | splits | s) can  | perf   | orm   |      | 5     | 10   | 114                    | 2            | 0.1 | 15     | 58   | 341    | 99.74 |
| 96 | 0   | 0           | 1   |                                                    | ١                                          | well    |              |        |       |        |         |        |       |      | 7     | 11   | 67                     | 3            | 0.1 | 12     | 43   | 449    | 99.74 |
| 88 | 0   | 1           | 2   | 0                                                  | ,                                          | 0       |              | r      | 1     | 0      | 1       | 1      | 0     | ¢.   | 1     | 10   | 245                    | 2            | 0.1 | 11     | 27   | 690    | 99.64 |
| 99 | 0   | 2           | 0   | 1                                                  | 0                                          | 2       | 0            | 7      | 1     | 3      | 0       | 3      | 5     | 6    | 7     | 10   | 30                     | 2            | 0.1 | 11     | 47   | 90     | 99.6  |
| 51 | 0   | 0           | 0   | 1                                                  | 1                                          | 0       | 1            | 0      | 1     | 0      | 4       | 1      | 1     | 4    | 4     | 1    | 109                    | 4            | 0.1 | 10     | 19   | 1346   | 99.55 |
| 34 | 0   | 2           | 0   | 0                                                  | 0                                          | 1       | 1            | 1      | 1     | 1      | 0       | 3      | 4     | 3    | 5     | 1    | 221                    | 3            | 0.1 | 11     | 23   | 1314   | 99.55 |

HGCal Trigger MOO



### **Best solutions**

|    | ЕоТ | sho<br>Igth | vzz | 1st<br>Iay | firstH_5 | Emx_2R | core<br>Igth | 1stH_1 | meanz | Emx_5 | Emx_4R | abseta | vee                        | vrr | vpp    | ebm1 | max<br>boost<br>rounds | max<br>depth | eta              | n_kept | bits | splits | eff   |  |  |
|----|-----|-------------|-----|------------|----------|--------|--------------|--------|-------|-------|--------|--------|----------------------------|-----|--------|------|------------------------|--------------|------------------|--------|------|--------|-------|--|--|
| 76 | 0   | 1           | 2   | 1          | 4        | 0      | 5            | 1      | 1     | 5     | 3      | 5      | 1                          | 7   | 9      | 10   | 207                    | 2            | 0.1              | 14     | 55   | 611    | 99.79 |  |  |
| 83 | 0   | 0           | 0   | 1          | 1        | 5      | 0            | 1      | 1     | 0     | 0      | 1      | 5                          | 3   | 7      | 10   | 246                    | 4            | 0.1              | 10     | 35   | 2945   | 99.79 |  |  |
| 50 | 0   | 1           | 0   | 2          | 1        | 0      | 1            | 3      | 1     | 0     | 4      | 2      | 0                          | 4   | 3      | 11   | 146                    | 4            | 0.1              | 11     | 33   | 1717   | 99.78 |  |  |
| 86 | 0   | 1           | 0   | 1          | 1        | 2      | 1            | 0      | 0     | 2     | 4      | 2      | 1                          | 4   | 2      | 9    | 147                    | 5            | 0.1              | 12     | 30   | 2973   | 99.77 |  |  |
| 42 | 2   | 0           | 0   | 1          | 1        | 5      | 1            | 1      | 1     | 2     | 0      | 0      | 1                          | 3   | 2      | 10   | 120                    | 5            | <mark>0.1</mark> | 12     | 30   | 2249   | 99.77 |  |  |
| 37 | 2   | 0           | 2   | 1          | 1        | 0      | 5            | 2      | 1     | 0     | 5      | 3      | 3                          | 5   | 8      | 10   | 144                    | 3            | 0.1              | 13     | 48   | 929    | 99.75 |  |  |
| 78 | 1   | 1           | 3   | 3          | 1        | 0      | 1            | 1      | 10    | 5     | 4      | 4      | 4                          | 5   | 5      | 10   | 114                    | 2            | 0.1              | 15     | 58   | 341    | 99.74 |  |  |
| 96 | 0   | 0           | 1   | 0          | 1        | 1      | 1            | 0      | 1     | 4     | 1      | 5      | 5                          | 5   | 7      | 11   | 67                     | 3            | 0.1              | 12     | 43   | 449    | 99.74 |  |  |
| 88 | 0   | 1           | 2   | 0          | 1        | 0      | 1            | 1      | 1     | 0     | 1      | 1      |                            | Lo  | )<br>W | orec | ision                  | for n        | nos              | t var  | iabl | es     |       |  |  |
| 99 | 0   | 2           | 0   | 1          | 0        | 2      | 0            | 7      | 1     | 3     | 0      | 3      |                            |     | ) D    | ven  | 1 hit                  | can k        | הם נ             | anou   | σhl  |        |       |  |  |
| 51 | 0   | 0           | 0   | 1          | 1        | 0      | 1            | 0      | 1     | 0     | 4      | 1      | Seven i bit can be enough: |     |        |      |                        |              |                  |        |      |        |       |  |  |
| 34 | 0   | 2           | 0   | 0          | 0        | 1      | 1            | 1      | 1     | 1     | 0      | 3      |                            | E,  | ven    |      | mpor<br>               | lanı         | Vd               | IIdDle | 25   |        |       |  |  |
|    |     |             |     |            |          |        |              |        |       |       |        |        | ○ <z>, EoT</z>             |     |        |      |                        |              |                  |        |      |        |       |  |  |



### Conclusion

Can find models that satisfy the requirements:

- use a very limited number of bit,
  - can use less than 60 bits for around 12 variables
  - fit in 128 bit budget
- with limited size (need FPGA synthesis but expected to fit),
- without sacrificing the performance
- Limits:
  - high number of trainings (here: 60 gen \* 100 pop)
    - fast for BDTs, but more complex models?
  - number of steps needed for convergence increases with the number of hyperparameters and/or objectives



- Evolutionary algorithms (EA) are optimization algorithms inspired by darwinian evolution
- Uses an **imitation of nature**'s tools to find optimal solution to a problem
  - $\circ$  mating
  - mutation
  - $\circ$  selection
- Different algorithms
  - multi-objective: Non-dominated sorting algorithm 2 (NSGA-II)
  - o for high-dimensional problems: NSGA-III
  - multiple variations (see <u>pymoo availables algorithms</u> for examples)



22/21

ML workshop 27/09/2022



# Backup: NSGA-II : initialization &

### evaluation

- 1st step: initialization
  - create a starting population
  - should ideally sample most of the phase space
    - random
    - hyperdiagonal
    - functional
- 2nd step: evaluation
  - o determine which individuals are non dominated



# Backup: NSGA-II: Reproduction, mating

### and crossover

- 3rd step: reproduction
  - new generation obtained by reproducing pairs of ND individuals
    - e.g. random, local, tournament selection pairing
  - **crossover**: mix the genes (parameter values)
    - tunable
  - mutation: genes can take new value
    - tunable
  - cycle to first step until termination criterion is met
    - e.g. a given number of generation for example





# Backup: <u>pymoo</u> implementation

from pymoo.factory import get\_algorithm, get\_crossover, get\_mutation, get\_sampling, get\_selection
from pymoo.optimize import minimize
from pymoo.model.problem import Problem

```
class MyProblem(Problem):
```

```
def _evaluate(self, x, out, *args, **kwargs):
    out["F"] = train_quantized(x)[0] #black box function to evaluate, should return n_obj values
problem=MyProblem()
```

#### HGCal Trigger MOO



# Backup: pymoo implementation (cont)

```
method = get algorithm("nsga2",
15
16
                            pop size=pop size, #number of individual at each generation
                            sampling=sampling, #initial population
17
                            crossover=get crossover("int sbx", prob=1.0, eta=3.0), #crossover function
18
                           mutation=get mutation("int pm", eta=3.0), # def 3 #mutation functin
19
                            eliminate duplicates=True,
20
21
22
23
24
    res = minimize(problem,
25
                   method,
26
                   termination=('n gen', 60), #end point
                   seed=42,
27
                   save history=True,
28
                   verbose=True
29
30
31
```



### FPGA resource usage

- Algorithms implemented on FPGA occupy a certain amount of ressource (for BDTs, in particular LUT)
- Synthesis software like VIVADO or VITIS (for XILINX boards) can simulate the implementation and provide a resource rapport
  - the models must be converted before synthesis
  - o for NN: <u>hls4ml</u> library
  - for BDT: <u>conifer</u>
- But conifer has limitations:
  - can not allocate different precision to each input variable
  - theoretically possible, not implemented yet
- Build a proxy to evaluate quickly a model resource usage



### HGCal Trigger MOO

#### ML workshop 27/09/2022



- Idea: estimate the amount of resource (LUT) used for a tree split with a given precision
- Train BDTs, synthesize them and measure ratio nb of LUT/nb of split
  - differentiate results by the precision but also max tree depth
- at high precision : linear behavior, easy to determine ratio
- at lower precision: plateauing effect
  - precision affect every quantity, even each tree coefficient
  - tree with low coeffs suppressed at low precision
  - extract ratio from linear part
- at very low precision: linear behavior hard to extract, close to 1 LUT per split



# NSGA2 parameters

- Initialization:
  - hyperdiagonal + random (total = 100 individuals)
- Mating:
  - random pairing
  - binary crossover based on an exponential probability distribution
  - polynomial mutation (exponential distribution,  $\eta$ = 3)
  - 100 children per generation
- Termination at 60 cycles



**HGCal Tr** 

### **Best solutions**

|    | EoT | sho<br>Igth | vzz | 1st<br>lay     | firstH_5                   | Emx_2R         | core<br>Igth     | 1stH_1 | meanz | Emx_5 | Emx_4R | abseta | vee | vrr | vpp | ebm1 | max<br>boost<br>rounds | max<br>depth | eta | n_kept | bits | splits | eff   |
|----|-----|-------------|-----|----------------|----------------------------|----------------|------------------|--------|-------|-------|--------|--------|-----|-----|-----|------|------------------------|--------------|-----|--------|------|--------|-------|
| 76 | 0   | 1           | 2   | 1              | 4                          | 0              | 5                | 1      | 1     | 5     | 3      | 5      | 1   | 7   | 9   | 10   | 207                    | 2            | 0.1 | 14     | 55   | 611    | 99.79 |
| 33 | 0   | 0           |     | ام             | hm1 k                      | has the        | 2                |        | 1     | 0     | 0      | 1      | 5   | 3   | 7   | 10   | 246                    | 4            | 0.1 | 10     | 35   | 2945   | 99.79 |
| 50 | 0   | 1           | •   |                |                            |                | <del>.</del><br> |        | 1     | 0     | 4      | 2      | 0   | 4   | 3   | 11   | 146                    | 4            | 0.1 | 11     | 33   | 1717   | 99.78 |
| 86 | 0   | 1           |     | n              | nighest bit budget.        |                |                  |        | 0     | 2     | 4      | 2      | 1   | 4   | 2   | 9    | 147                    | 5            | 0.1 | 12     | 30   | 2973   | 99.77 |
| 42 | 2   | 0           |     | D              | roppii                     | ng the         | 2                |        | 1     | 2     | 0      | 0      | 1   | 3   | 2   | 10   | 120                    | 5            | 0.1 | 12     | 30   | 2249   | 99.77 |
| 37 | 2   | 0           |     | aı             | moun                       | t caus         | es a             |        | 1     | 0     | 5      | 3      | 3   | 5   | 8   | 10   | 144                    | 3            | 0.1 | 13     | 48   | 929    | 99.75 |
| 78 | 1   | 1           |     | si             | gnific                     | ant dr         | op i             | n      | 10    | ذ     | 4      | 4      | 4   | 5   | 5   | 10   | 114                    | 2            | 0.1 | 15     | 58   | 341    | 99.74 |
| 96 | 0   | 0           |     | ef             | ficien                     | CV             | •                |        | 1     | 4     | 1      | 5      | 5   | 5   | 7   | 11   | 67                     | 3            | 0.1 | 12     | 43   | 449    | 99.74 |
| 88 | 0   | 1           |     | D              | ifforo                     | nt             |                  |        | 1     | 0     | 1      | 1      | 0   | 7   | 1   | 10   | 245                    | 2            | 0.1 | 11     | 27   | 690    | 99.64 |
| 99 | 0   | 2           | •   | U              |                            |                | - 6              |        | 1     | 3     | 0      | 3      | 5   | 6   | 7   | 10   | 30                     | 2            | 0.1 | 11     | 47   | 90     | 99.6  |
| 51 | 0   | 0           |     | combination of |                            |                |                  |        | 1     | 0     | 4      | 1      | 1   | 4   | 4   | 1    | 109                    | 4            | 0.1 | 10     | 19   | 1346   | 99.55 |
| 34 | 0   | 2           |     | m              | ediur                      | n bud          | get              | for    | 1     | 1     | 0      | 3      | 4   | 3   | 5   | 1    | 221                    | 3            | 0.1 | 11     | 23   | 1314   | 99.55 |
|    |     |             |     | se<br>yi<br>re | everal<br>elds c<br>esults | featu<br>compa | res<br>irabl     | e      |       |       |        |        |     |     |     |      |                        |              |     |        |      |        |       |





The best solutions seem to be the one balancing the size of the BDTs and the number of bits used

HGCal Trigger MOO

ML workshop 27/09/2022

Hakimi Alexandre

31/21





- around ¼ of the variables are dropped
- the majority are afforded a very small number of bits
- very few variables use more than 4 bits in most models

32/21

HGCal Trigger MOO

ML workshop 27/09/2022