

Optimized Reconstruction of the Position of Interaction in High-Performances γ-Cameras

<u>T. Bossis</u>^{a,c}, M.-A. Verdier^{a,c*}, T. Beaumont^b, F. Bouvet^a, D. Broggio^b, O. Caselles^d, S. Lamart^b, L. Pinot^{a,c}, S. Zerdoud^d, L. Ménard^{a,c}

^a Université Paris Saclay, IJCLab CNRS-IN2P3, F-91405 Orsay, France.
^b Laboratory of Internal Dose Assessment, IRSN, Fontenay-aux-roses, France.
^c Université Paris Cité, IJCLab CNRS-IN2P3, F-91405 Orsay, France.
^d Institut Claudius Regaud, IUCTO, TOULOUSE, France.

Role of dosimetry in internal radiotherapy

Dose-based treatment planning :

determine the activity to be injected according to the desired clinical outcomes and tolerance doses of organs at risk

Post-treatment verification : control that the absorbed dose corresponds to the one estimated from the evaluation phase

Correlation between the dose released to the tumors/organs at risk and the clinical effects

Thyroid diseases treatments with ¹³¹I: 84% of all MRT treatments !

Improve the individual quantitative assessment of the heterogeneous distribution and biokinetics of ¹³¹I before and <u>after</u> treatment administration for thyroid diseases

Development of a high-resolution mobile camera, 10x10cm² Field of View, for imaging with high energy gamma rays (>300 keV) and high photon fluence rates (200 kcps @ 364 keV)

Mobility to perform exams at the patient's bedside or in an isolated room for an accurate temporal sampling of the ¹³¹I biokinetics

Compactness to improve image contrast (reduced camera/source distance and optimized angular view)

High spatial resolution (3 to 6 mm FWHM) to improve detectability and quantification of small activity heterogeneities (reduction of the partial volume effect)

High energy resolution (<8% FWHM @ 364 keV) to reduce scatter from high energy gamma rays

Design of the miniaturized gamma camera

10x10cm² Field of View clinical prototype

- The photodetection system
 - 256 Hamamatsu S13361-6050NE-04 monolithic arrays (6x6 mm²/50µm) mounted on an interface PCB (Sixteen 4x4 arrays)
 - 10x10cm² and 1 cm thick CeBr₃ continuous scintillator with reflective coated edges
 - Commercial acquisition electronics (TOFPET 2B ASICs PETSys Electronics)
 - Spatial coincidence trigger to reject dark counts
 - Acquisition dead time < 1% at 150 kevents/s

Instrinsic performance

-40

-20

0 x (mm)

Energy resolution map

133-Ba spectrum (Central FoV)

Energy resolution vs electronics parameters

Spectroscopic performance evaluation :

- Climatic chamber at 21°C
- Collimated ¹³³Ba source (356 keV) mounted on a 3D motorized platform
- Optimal set of electronics parameters:
- ER = 8.06±0.21% in CFOV (75% of full FoV)

Spatial performance evaluation : Spatial resolution

Théo Bossis

IN2P3/IRFU Machine Learning Workshop

40

20

11.5

11.0

at 356 keV

10.0 WHMA %)

9.0

8.5 6

8.0

7.5

Reconstruction Methods

Method	Туре	Speed	Ref. data free	Performances	Comments
Centroid [1]	Geometric	+ +	÷	-	Strong distortions, no Dol
Analytic model fit [2]	Iterative	÷	÷	-	Optical properties dependent
Interpolated model fit [3]	Iterative	-	-	÷	No easy Dol
K-Nearest Neighbors [4]	Machine Learning		-	÷	Computing intensive
Neural Network [5]	Machine Learning	+ +	-	÷	Many parameters to tune

R. Pani et al., IEEE Nuclear Science Symposium Conference Record, 2011, pp. 3395-3398
C. Trigila et al 2022 Phys. Med. Biol. 67 035011
A Morozov et al 2017 Phys. Med. Biol. 62 3619
H. T. van Dam et al., IEEE Transactions on Nuclear Science, vol. 58, no. 5, pp. 2139-2147, Oct. 2011
Gangadhar Jaliparthi et al 2021 Phys. Med. Biol. 66 145008

2 Data sets

- Scan:
 - ¹³³Ba source (356 keV) with 0.5 mm diameter single-hole Tungsten collimator.
 - Scan over the whole FoV with 1 mm step
 - Spurious events filtering : ~2k full-energy evts/position
 - 2 frames subsets:
 - ~1000 full-energy peak evts/position for reference/training
 - ~1000 full-energy peak evts/position for validation
- Flood field:
 - ~ 30.10⁶ full-energy peak events
 - Non-collimated ¹³³Ba source set at ~50 cm

• Regions:

- Central Field of View (CFoV) = 75% (lin) of the total FoV.
- Complementary Central Field of View (/CFoV).

- 4 Types of measurements for each region [*]:
 - Scan based:
 - Spatial Resolution (SR): Average of the SR at each scan position.
 - Local Intrinsic Spatial Distortion (LISD): Average of the distance between the measured scan position to their row and column linear regression values.
 - Flood Field based
 - Integral Uniformity (IU): Ratio between standard deviation and mean of the flood field, reconstructed, smoothed image.
 - Differential Uniformity (DU): mean of the local variation of the IU (based for each pixel on the 2, 4, 6, 8 and 10 closest pixels in both row and column directions)

*B.S. Bhatia et al. Physica Medica 31 (2015) 98e103

Interpolated Model Fit

- The Reference data set can be used to determine each SiPM discrete response function by averaging of N=300-600 frames
- Values can then be interpolated at any (x, y) position.
- For each frame of the validation data set a fit (non-linear least-square) is performed for best (x₀, y₀) estimation.
- At each iteration a value is interpolated for each pixel.
- Optimization in terms of: evts/ref position, number of ref positions, frame smoothing, fitter optimization, ...

- Best parameters set:
 - Ref positions: 34x34 (3 mm step)
 - Number of frame per scan position : 600evts
 - Frame smoothing
 - Interpolation type: spline
- Performances
 - SR CFOV: 1.30±0.06
 - SR /CFOV: 1.85±0.77
 - LISD CFOV: 0.06±0.03
 - LISD /CFOV: 0.19±0.37
 - IU CFOV: 4.5%
 - IU /CFOV: 5.76%
 - DU CFOV: 3.66%
 - DU /CFOV: 3.66%

- The k-Nearest Neighbors (kNN) method consist of finding, for each frame, the k closest in terms of pixel to pixel Euclidean distance.
- Regression of the position of each frame is then evaluated from the mechanical position of these k closest distances:
 - Barycenter of the mechanical positions weighted by their inverse Euclidean distance.
 - Fit of the positions with a Lorentz-like bi-variate function

K-NN Results

- Parameters:
 - Ref positions: 100x100 (1 mm step)
 - 600 events/scan position
 - 300 Nearest Neighbors
 - Bi-variate Lorentz-like function maximum-likelihood fit
- Performances

Théo Bossis

- SR CFOV: 0.83±0.13
- SR /CFOV: 3.96±184
- LISD CFOV: 0.01±0.08
- LISD /CFOV: 0.03±0.78
- IU CFOV: 3.81%
- IU /CFOV: 9.92%
- DU CFOV: 3.29%
- DU /CFOV: 3.51%

Convolutional Neural Networks

- Convolutional Neural Networks (CNN) use maps obtained by convolution of a kernel on the image.
- At each layers the numbers of feature increases while the dimension of the convolution maps decreases by pooling.
- Goal is to use geometrical features of the input images

Deep Residual Convolutional Neural Network

- Deep Residual Convolutional Neural Network (DR-CNN) use batch normalization to improve training performances
- Skip connections are then used to avoid gradient issues
- DR-CNN are a sequence of small CNN
- Keras + Tensorflow
- Optimized in terms of: Network structure, kernel size, number of filters, loss function, number of training samples and reference scan positions, ...

Gangadhar Jaliparthi et al 2021 Phys. Med. Biol. 66 145008

DR-CNN - Results

- Best parameters
 - 30 epochs
 - Ref positions: 800 evts/pos, 1 mm step
 - 3 Residual blocks (=6 conv. Layers)
 - Around 1 M neurons
 - Loss function: MAE
- Performances
 - SR CFOV: 1.15±0.06
 - SR /CFOV: 1.54±0.55
 - LISD CFOV: 0.11±0.05
 - LISD /CFOV: 0.35±0.66
 - IU CFOV: 3.35%
 - IU /CFOV: 4.35%
 - DU CFOV: 2.39%
 - DU /CFOV: 2.45%

Summary

	SR CFOV	SR /CFOV	LISD CFOV	LISD /CFOV	IU CFOV	IU /CFOV	DU CFOV	DU /CFOV	Speed
Fit	1.30±0.06	1.85±0.77	0.06±0.03	0.19±0.37	4.5%	5.76%	3.66%	3.66%	~100 evt/s/CPU
K-NN	0.83±0.13	3.96±184	0.01±0.08	0.03±0.78	3.81%	9.92%	3.29%	3.51%	< 1 evt/s/CPU
DR-CNN	1.15±0.06	1.54±0.55	0.11±0.05	0.35±0.66	3.35%	4.35%	2.39%	2.45%	~5000 evts/s (GPU) ~2700 evts/s (native multi-cpu)

- All three methods yield spatial performances sufficient for our camera, but:
 - k-NN has good spatial resolution but is too slow for our semi-real time needs
 - Interpolated fit overall good but doesn't outperform on any criteria
 - DR-CNN give very good uniformity values and provides overall good performances while being much faster

Acknowledgments

Laboratoire de Physique des 2 Infinis

> IRSN INSTITUT

DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Tiffany Beaumont David Broggio Mohamed Bensiali Estelle Davesnes Aurélie Desbrée

Carlotta Trigila Yves Charon Françoise Bouvet Laurent Ménard Laurent Pinot Marc-Antoine Verdier

Denis Reynet Harald Ramarijaona Aurélien Blot

Olivier Caselles Laviana Vija Delphine Vallot INSTITUT CLAUDIUS REGAUD

Mathieu Sinigaglia Slimane Zerdoud

Luis Ammour Jad Farah Aurélie Forbes

• With financial support from ITMO Cancer AVIESAN within the framework of the Cancer Plan (AAP Physicancer 2019-2023, THIDOS project)