

B decays reconstruction at Belle II using Graph Neural Networks

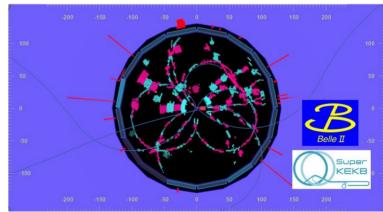
IN2P3/IRFU Machine Learning workshop - 28/09/2022

Jacopo Cerasoli CNRS - IPHC

Belle II [arXiv:1011.0352]

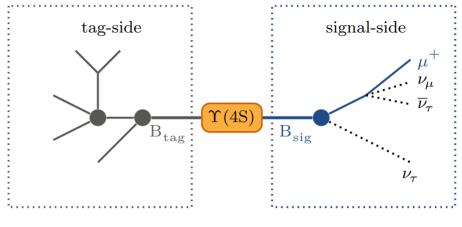
- Multi-purpose detector @ SuperKEKB accelerator
- Collisions at center-of-mass energy of 10.58 GeV
 - $\sigma(e^+e^- \to \Upsilon(4S)) \sim 1 \text{ nb}$
 - $\mathcal{B}(\Upsilon(4S) \to B\bar{B}) \gtrsim 96\%$

- Will collect 50 ab⁻¹ at the end of operation (now $\sim 430 \text{ fb}^{-1}$)
- Instantaneous luminosity world record: 4.7 x 10³⁴ cm⁻² s⁻¹ (June 2022)
- Important complementarity with LHCb
 - · Independent checks if new physics discovered

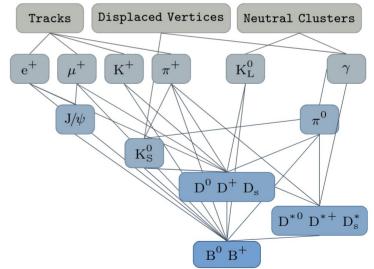


Full Event Interpretation [arXiv:1807.08680]

- Interested in **final states with neutrinos**
 - · Reconstruct *tag-side* to constrain the kinematics

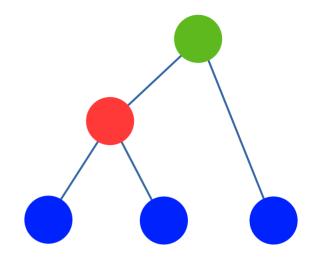


- Present solution: Full Event Interpretation (FEI)
 - · Hierarchical approach based on BDTs
 - · B reconstructed in more than 10k modes!
 - · Overall reconstruction efficiency $\mathcal{O}(1\%)$
 - · Output of final stage interpreted as "B probability"
- Cons: decay modes hard-coded, ~ 85 % B decays not considered



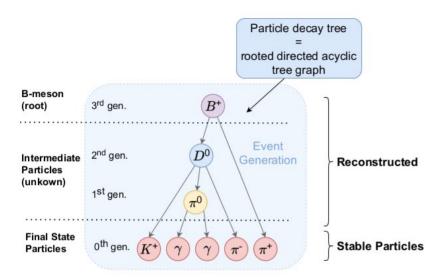
B reconstruction using Graph Neural Networks

- Particle decays are naturally described by tree graphs
- Goal: develop graph-based Full Event Interpretation (graFEI)



- Today's menu:
 - · Proof of concept: Learning tree structures from leaves for particle decay reconstruction, James Kahn et al 2022 [arXiv:2208.14924] (see also <u>Ilias Tsaklidis</u>' and <u>Lea Reuter</u>'s master theses)
 - · First (preliminary) results on Belle II simulated dataset (see also <u>Arthur Thaller's talk</u>)

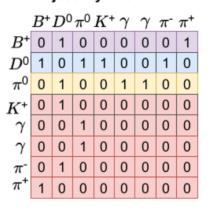
Lowest Common Ancestor (LCA) matrix



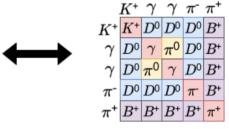
LCAG

	$K^{\scriptscriptstyle +}$	γ	γ	$\pi^{\scriptscriptstyle{-}}$	π^+
K^{+}	0	2	2	2	3
γ	2	0	1	2	3
γ	2	1	0	2	3
$\pi^{\scriptscriptstyle{-}}$	2	2	2	0	3
π^{+}	3	3	3	3	0

Adjacency Matrix

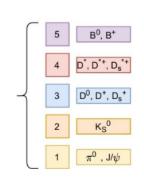


Lowest Common Ancestor (LCA) Matrix



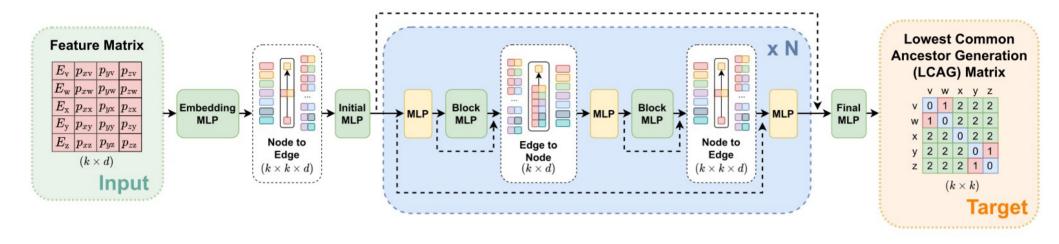
LCAS

	K^{+}	γ	γ	$\pi^{\text{-}}$	π^+
K^{+}	0	3	3	3	5
γ	3	0	1	3	5
γ	3	1	0	3	5
$\pi^{\text{-}}$	3	3	3	0	5
π^{+}	5	5	5	5	0



L. Reuter. Full Event Interpretation using Graph Neural Networks (link)

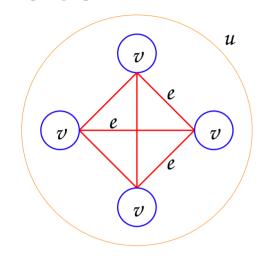
graFEI on Phasespace dataset [arXiv:2208.14924]

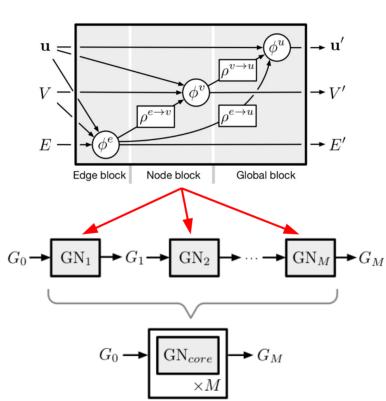


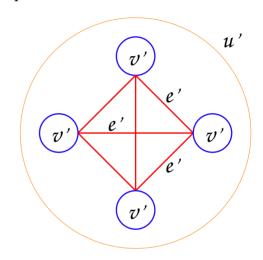
- Neural Relational Inference (NRI) model [arXiv:1802.04687]
- Dataset generated with Phasespace library
- 4-momentum used as input feature
- Average 47.7 % perfectly predicted LCAG on Phasespace dataset (60.9 % for decays with up to 10 leaves, 94.2 % up to 6 leaves)

GraFEI on Belle II simulated dataset – Graph network block

- "Geometric" graph neural network [arXiv:1806.01261]
- Input graph is transformed with series of GN blocks, output graph has same structure with updated values







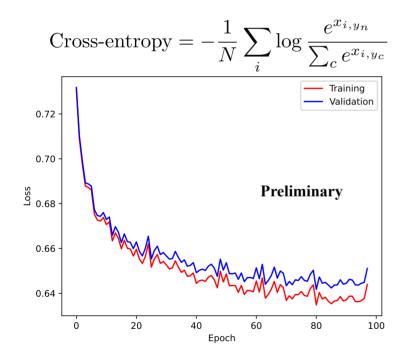
$$\mathbf{e}'_{k} = \phi^{e}\left(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}\right) \qquad \mathbf{\bar{e}}'_{i} = \rho^{e \to v}\left(E'_{i}\right)$$

$$\mathbf{v}'_{i} = \phi^{v}\left(\mathbf{\bar{e}}'_{i}, \mathbf{v}_{i}, \mathbf{u}\right) \qquad \mathbf{\bar{e}}' = \rho^{e \to u}\left(E'\right)$$

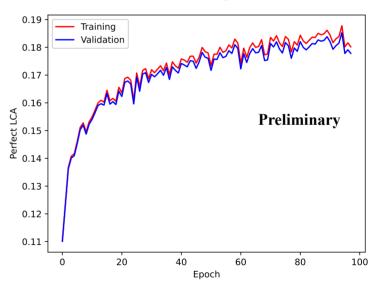
$$\mathbf{u}' = \phi^{u}\left(\mathbf{\bar{e}}', \mathbf{\bar{v}}', \mathbf{u}\right) \qquad \mathbf{\bar{v}}' = \rho^{v \to u}\left(V'\right)$$

GraFEI on Belle II simulated dataset – Training

- Training done with monogeneric $\Upsilon(4S) \to B^0 (\to \nu \nu) \bar{B^0} (\to X)$ simulated Belle II sample
 - · Node-level features: particle IDs, 4-momentum, M, charge, impact parameter, photon cluster features
 - · Edge-level feature: angle between pairs of particles' momenta
 - · Global feature: number of leaves (i.e. final state particles)



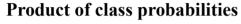
$$Perfect \ LCA = \frac{Perfectly \ predicted \ LCAs}{Total \ predicted \ LCAs}$$

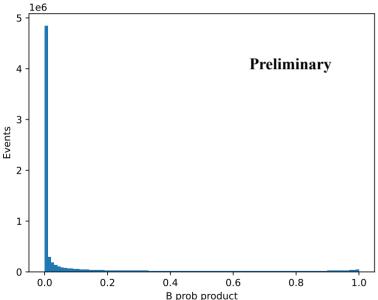


Max perfect LCA = 18.6 % (epoch 94)

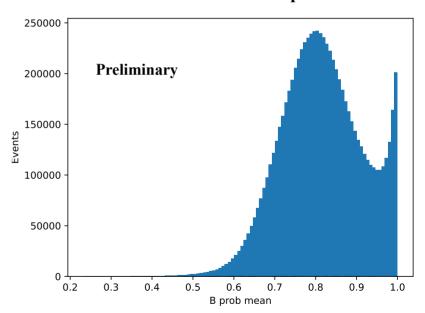
GraFEI on Belle II simulated dataset – B probability

- Having a **definition of "B probability"** analogous to FEI is desirable
 - · Each LCA element has corresponding probability of belonging to the predicted class

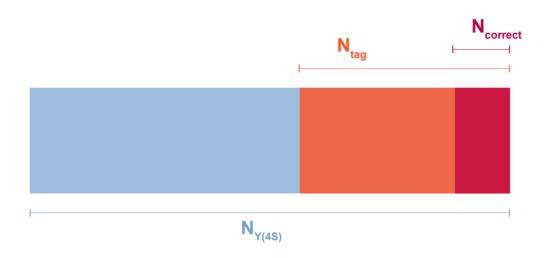




Arithmetic mean of class probabilities



GraFEI on Belle II simulated dataset – Comparison with FEI



- Tag-side efficiency = $N_{correct} / N_{Y(4S)}$
- Purity = $N_{correct} / N_{tag}$

	FEI	graFEI
N _{tag}	# Events reconstructed	# Events with valid tree
N _{correct}	# Correctly reconstructed events*	# Events with perfectly predicted LCAS

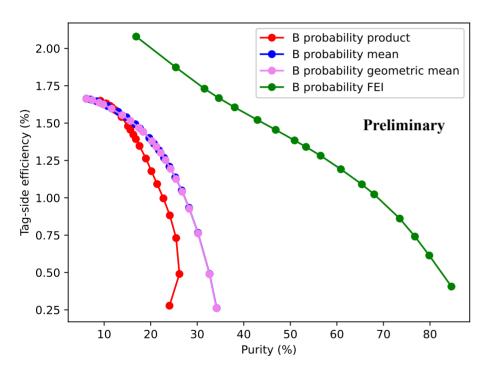
• *graFEI does not make predictions on masses of final state particles, so truth-matching criteria are relaxed accordingly

GraFEI on Belle II simulated dataset – Comparison with FEI

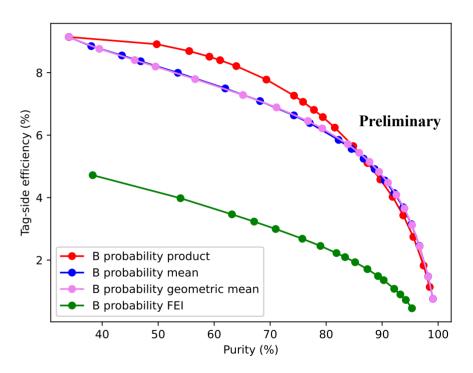
- First evaluation of the **performances on** $\Upsilon(4S) \to B^0(\to \nu\nu)\bar{B^0}(\to X)$ MC signal
- Once tag side is reconstructed, events with no extra tracks are selected

Tag-side efficiency = $N_{correct} / N_{Y(4S)}$

 $Purity = N_{correct} / N_{tag}$



FEI outperforms graFEI when all the final state particles are reconstructed



graFEI outperforms FEI when some final state particles might be missing

Future prospects

- Short-term plans:
 - · Investigate performances including background MC
 - Make predictions on B momentum: $\text{Loss} = -\frac{1}{N} \sum_{i} \log \frac{e^{x_{i,y_n}}}{\sum_{c} e^{x_{i,y_c}}} + \alpha ||\vec{p} \vec{p}_{\text{true}}||^2$
 - · Make prediction on masses of final state particles?
- Longer-term plans:
 - · Optimization of various aspects of the algorithm (input variables, hyper-parameters, architecture, ...)
 - Full reconstruction of Y(4S) decay?
 - ...

Stay tuned!

Hyper-parameters

- NRI:
 - Droput rate = 0.3
 - Batch size = 128
 - Learning rate = 0.001
 - · Feed-forward width = 2048
 - Number hidden layers = 1
 - · Additional initial/final layers = 0
 - Number of blocks = 1

- graFEI:
 - Droput rate = 0.3
 - Batch size = 128
 - Learning rate = 0.001
 - · Feed-forward width = 512
 - Number hidden layers = 1
 - · Number of ML = 1

GraFEI on Belle II simulated dataset – Lost particles

