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What is AMI?
● AMI (ATLAS Metadata Interface) is a generic ecosystem for metadata:

– Heterogenous datasource connectivity

– Primitives for metadata extraction and processing

– High level tools for selecting data by metadata criteria

● The ecosystem has development kits for:

– Developing JAVA business objects (server-side)

– Developing metadata-oriented Web applications (client-side)

● AMI is designed for:

– Scalability, evolutivity and maintainability
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Applications / monitoring
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AMI JAVA Core
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AMI JAVA Core features

● AMI JAVA Core is the central part of the AMI ecosystem

● Main features:

– Authentication (SSO, OAuth2) and authorizations

– Command engine (~100 generic commands)

● Metadata queries (trivial [SQL, MQL] or more complex, read or write), 
experiment-specific commands, service administration, …

– Metadata Query Language (MQL) and Structured Query Language (SQL)

– High level primitives for manipulating data

● DB rowsets, JSON documents, XML documents, remote access, ... 

authentication and roles

high level primitives for manipulating data 

distributed transactional engine

connection pool

JDBC drivers

reflexion and MQL

command engine data formatter

n-tiers architecture

Command layer

Metadata layer
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Command layer

Authorization sub-system
Command sub-system

(JAVA classes)

Authentication sub-system
(password / X.509 certificate / JWT / SSO with OAuth2)

Metadata layerAMI
conf

SQL
NoSQL

Other
(files, brokers, ...)

Formatter
(XSLT)

clients (HTTP services)

Example of commands:
  GetSessionInfo
  SearchQuery -catalog=”...” -sql=”...”
  GetDatasetInfo -logicalDatasetName=”...”     (for ATLAS, getting detailed dataset info)

granularity:

catalog, row
 or field
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Metadata layer

MySQL Oracle NoSQL

Connection pool (HikariCP)
free used

……

Transaction pool
Transaction #1 Transaction #2

…
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Metadata layer

MySQL Oracle NoSQL

Connection pool (HikariCP)

Relation extraction for SQL only
(foreign keys, indices, ...)

free used

……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Transaction pool

MetadataQueryLanguage

Transaction #1 Transaction #2

…
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Metadata layer

Command #1
(transaction #1)

MySQL Oracle NoSQL

Connection pool (HikariCP)

Command sub-system

Relation extraction for SQL only
(foreign keys, indices, ...)

free used

……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Very high level rowset 

Transaction pool

MetadataQueryLanguage

Data primitives

Transaction #1 Transaction #2

…

Command #2
(transaction #2)

Command #3
(transaction #2)

…
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Metadata Query Language (MQL)
● MQL  is a kind of SQL without  FROM clause nor join

● It makes it possible to build queries without (precisely) knowing 
relations

● Joins are automatically generated from the reflexion sub-system info

● MQL turns DB-oriented point of view to metadata-oriented point of view

● When there are cycles in relations, there is a dedicated syntax to apply 
path constraints

MQL to SQL
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MQTT
● For about 1 year, each sub-system of the AMI ecosystem can connect 

to an optional MQTT broker for:

– Monitoring purpose (cpu usage, ram usage, disk usage, ...)

– Sending AMI commands and / or providing custom AMI commands

● We provide:

– A library to develop MQTT-based services (for exemple the AMI Task Servers, ...)

– A standalone JavaScript client and a Vue.js 3-based micro-framework to develop 
Web applications 

● Eclipse Mosquitto with JWT token authentication

– https://github.com/odier-io/mosquitto-ip-jwt-auth

● Websockets with HTTPS handshake

https://github.com/odier-io/mosquitto-ip-jwt-auth
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AMI Web Framework
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AMI Web Framework (AWF)
● A Web framework for designing metadata-oriented applications

● AWF can be used without the AMI Server Backend

– Server-side, libraries AMIMini{PHP,Python,JAVA} can easily                                  
bridge AWF to existing services

● AWF is based on standard technologies:

– JS2020 (JS5 bundles with using Webpack and Babel), CSS3, HTML5

– Bootstrap 5, AMI-Twig (MVC pattern, JS Twig template engine implementation), 
Vue.js 3 (MVVM pattern) natively or with the AMI MQTT micro-framework

● Nginx-based image on Docker Hub
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Features and patterns
● Authentication & roles

● URL router, short URLs

● Sub-applications and reusable graphic controls (object paradigm)

● Centralized resource live cycle management (CSS, JS, JSON, xml, 
Twig files; AMI sub-applications; AMI controls)

● Wizards for generating sub-application and control skeletons

● Patterns:

– MVC

● Model → AMI commands
● View → TWIG templates
● Controller → classes ami.SubApp, ami.Control (JavaScript)

– MVVM

● based on Vue.js 3
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Default controls and applications 
● Controls can be embedded in external Web pages such as wikis

● Applications are generally built by assembling controls

● Main available controls:

– Dialog boxes

– Controls for searching (Google-like Search, Criteria Search, …)

– Controls for displaying (Schema Viewer, Tab, Table, Element Info, …)

– Controls for annotating entities (WhiteBoard, …)

● Main available applications:

– Embedded CMS

– AMI command interpreter

– Admin Dashboard and Monitoring

– Schema Viewer, Table Viewer, Simple Search, Criteria Search, Search Modeler, …



16/11/22 AMI - JI 2022 16

Screenshots

A control embedded
in a wiki and connected to

the central AMI service

Searching ATLAS
datasets by criteria

This control executes the 
GetDatasetInfo command

Displaying search
results in AMI

The AMI-Tags
application
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Screenshots
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Screenshots
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Screenshots
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Screenshots
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Screenshots
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Screenshots
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AMI Task Server and AMI Pipeline
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AMI Task Server features
● The AMI Task Server is used for:

– Extracting metadata from primary sources (pull mode)

– (Re)Processing and storing metadata in AMI

● It can run any kind of tasks (shell, python, java, ...)

● Can optionally benefit from the AMI Java Core library

● Main features:

– Kind of super CRON

– The AMI Task Server is distributed

– Control and monitoring via MQTT

– Mutual exclusion mechanism between tasks (with the AMI Exclusion Server)

– Priority lottery scheduler for avoiding starvation (not real time)  

– Pipelined tasks with execution report

– Image in Docker Hub
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AMI Task Monitoring (app based on the AMI MQTT micro-framework)
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AMI Task Monitoring (app based on the AMI MQTT micro-framework)
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AMI Task Monitoring (app based on the AMI MQTT micro-framework)
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AMI Task Monitoring (app based on the AMI MQTT micro-framework)
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AMI Pipeline features
● AMI provides a Node-RED-based low-code programming system for 

task pipeline definitions

● Image available on Docker Hub
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3 commands to test the AMI ecosystem! 

git clone https://github.com/ami-team/AMIDemo.git

cd AMIDemo

docker-compose up

● Runs: AMI server, AMI Task Server, AMI Task Exclusion, AMI Pipeline, 
Eclipse Mosquitto with our JWT authentication plugin, ...

● See more information there:

– https://github.com/ami-team/AMIDemo
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Conclusion
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Conclusion
● AMI is mature metadata ecosystem of more than 20 years of existence

● AMI Java Core

– High level server-side JAVA library for processing metadata

i) High level primitives for manipulating metadata,

ii) Metadata Query Language (MQL),

iii) datasource connectivity.

● AMI Services + lightweight clients

– AMI HTTP command service (proprietary), REST API, MQTT server control and monitoring

● AMI Web Framework

– For developing metadata-oriented Web applications and graphic controls

● AMI Task Server

– Distributed system for extracting, processing and storing metadata

● AMI Pipeline

– Low-code programming for task pipeline definitions

● https://hub.docker.com/repository/docker/amiteam/

https://hub.docker.com/repository/docker/amiteam/
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Questions?
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