
AMI
Scientific Metadata Ecosystem

Fabian Lambert, Jérôme Fulachier, Jérôme Odier, Maxime Jaume, Pierre-Antoine Delsart



16/11/22 AMI - JI 2022 2

What is AMI?
● AMI (ATLAS Metadata Interface) is a generic ecosystem for metadata:

– Heterogenous datasource connectivity

– Primitives for metadata extraction and processing

– High level tools for selecting data by metadata criteria

● The ecosystem has development kits for:

– Developing JAVA business objects (server-side)

– Developing metadata-oriented Web applications (client-side)

● AMI is designed for:

– Scalability, evolutivity and maintainability



16/11/22 AMI - JI 2022 3

 
Applications / monitoring

Overview of the AMI ecosystem

AMI JAVA Core
(core library server-side)

SQL
NoSQL

Other

AMI Task Servers
(metadata aggregation

and processing)

AMI
HTTP

Services
(servlets)

AMI Web Framework
(JS, x-domain AJAX)

Lightweight HTTP clients
(Python, JS, Java, C++)

Lightweight MQTT clients
(JS, JAVA)

in
te

rn
et

MQTT
broker

 

 

AMI Server Backend

AMI Pipeline
(NodeRED-based)

 

AMI Task
Exclusion

Server  



16/11/22 AMI - JI 2022 4

AMI JAVA Core



16/11/22 AMI - JI 2022 5

AMI JAVA Core features

● AMI JAVA Core is the central part of the AMI ecosystem

● Main features:

– Authentication (SSO, OAuth2) and authorizations

– Command engine (~100 generic commands)

● Metadata queries (trivial [SQL, MQL] or more complex, read or write), 
experiment-specific commands, service administration, …

– Metadata Query Language (MQL) and Structured Query Language (SQL)

– High level primitives for manipulating data

● DB rowsets, JSON documents, XML documents, remote access, ... 

authentication and roles

high level primitives for manipulating data 

distributed transactional engine

connection pool

JDBC drivers

reflexion and MQL

command engine data formatter

n-tiers architecture

Command layer

Metadata layer



16/11/22 AMI - JI 2022 6

Command layer

Authorization sub-system
Command sub-system

(JAVA classes)

Authentication sub-system
(password / X.509 certificate / JWT / SSO with OAuth2)

Metadata layerAMI
conf

SQL
NoSQL

Other
(files, brokers, ...)

Formatter
(XSLT)

clients (HTTP services)

Example of commands:
  GetSessionInfo
  SearchQuery -catalog=”...” -sql=”...”
  GetDatasetInfo -logicalDatasetName=”...”     (for ATLAS, getting detailed dataset info)

granularity:

catalog, row
 or field



16/11/22 AMI - JI 2022 7

Metadata layer

MySQL Oracle NoSQL

Connection pool (HikariCP)
free used

……

Transaction pool
Transaction #1 Transaction #2

…



16/11/22 AMI - JI 2022 8

Metadata layer

MySQL Oracle NoSQL

Connection pool (HikariCP)

Relation extraction for SQL only
(foreign keys, indices, ...)

free used

……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Transaction pool

MetadataQueryLanguage

Transaction #1 Transaction #2

…



16/11/22 AMI - JI 2022 9

Metadata layer

Command #1
(transaction #1)

MySQL Oracle NoSQL

Connection pool (HikariCP)

Command sub-system

Relation extraction for SQL only
(foreign keys, indices, ...)

free used

……

Reflexion sub-system

MQL → SQL
automatic generation of SQL Joins

Very high level rowset 

Transaction pool

MetadataQueryLanguage

Data primitives

Transaction #1 Transaction #2

…

Command #2
(transaction #2)

Command #3
(transaction #2)

…



16/11/22 AMI - JI 2022 10

Metadata Query Language (MQL)
● MQL  is a kind of SQL without  FROM clause nor join

● It makes it possible to build queries without (precisely) knowing 
relations

● Joins are automatically generated from the reflexion sub-system info

● MQL turns DB-oriented point of view to metadata-oriented point of view

● When there are cycles in relations, there is a dedicated syntax to apply 
path constraints

MQL to SQL



16/11/22 AMI - JI 2022 11

MQTT
● For about 1 year, each sub-system of the AMI ecosystem can connect 

to an optional MQTT broker for:

– Monitoring purpose (cpu usage, ram usage, disk usage, ...)

– Sending AMI commands and / or providing custom AMI commands

● We provide:

– A library to develop MQTT-based services (for exemple the AMI Task Servers, ...)

– A standalone JavaScript client and a Vue.js 3-based micro-framework to develop 
Web applications 

● Eclipse Mosquitto with JWT token authentication

– https://github.com/odier-io/mosquitto-ip-jwt-auth

● Websockets with HTTPS handshake

https://github.com/odier-io/mosquitto-ip-jwt-auth


16/11/22 AMI - JI 2022 12

AMI Web Framework



16/11/22 AMI - JI 2022 13

AMI Web Framework (AWF)
● A Web framework for designing metadata-oriented applications

● AWF can be used without the AMI Server Backend

– Server-side, libraries AMIMini{PHP,Python,JAVA} can easily                                  
bridge AWF to existing services

● AWF is based on standard technologies:

– JS2020 (JS5 bundles with using Webpack and Babel), CSS3, HTML5

– Bootstrap 5, AMI-Twig (MVC pattern, JS Twig template engine implementation), 
Vue.js 3 (MVVM pattern) natively or with the AMI MQTT micro-framework

● Nginx-based image on Docker Hub



16/11/22 AMI - JI 2022 14

Features and patterns
● Authentication & roles

● URL router, short URLs

● Sub-applications and reusable graphic controls (object paradigm)

● Centralized resource live cycle management (CSS, JS, JSON, xml, 
Twig files; AMI sub-applications; AMI controls)

● Wizards for generating sub-application and control skeletons

● Patterns:

– MVC

● Model → AMI commands
● View → TWIG templates
● Controller → classes ami.SubApp, ami.Control (JavaScript)

– MVVM

● based on Vue.js 3



16/11/22 AMI - JI 2022 15

Default controls and applications 
● Controls can be embedded in external Web pages such as wikis

● Applications are generally built by assembling controls

● Main available controls:

– Dialog boxes

– Controls for searching (Google-like Search, Criteria Search, …)

– Controls for displaying (Schema Viewer, Tab, Table, Element Info, …)

– Controls for annotating entities (WhiteBoard, …)

● Main available applications:

– Embedded CMS

– AMI command interpreter

– Admin Dashboard and Monitoring

– Schema Viewer, Table Viewer, Simple Search, Criteria Search, Search Modeler, …



16/11/22 AMI - JI 2022 16

Screenshots

A control embedded
in a wiki and connected to

the central AMI service

Searching ATLAS
datasets by criteria

This control executes the 
GetDatasetInfo command

Displaying search
results in AMI

The AMI-Tags
application



16/11/22 AMI - JI 2022 17

Screenshots



16/11/22 AMI - JI 2022 18

Screenshots



16/11/22 AMI - JI 2022 19

Screenshots



16/11/22 AMI - JI 2022 20

Screenshots



16/11/22 AMI - JI 2022 21

Screenshots



16/11/22 AMI - JI 2022 22

Screenshots



16/11/22 AMI - JI 2022 23

AMI Task Server and AMI Pipeline



16/11/22 AMI - JI 2022 24

AMI Task Server features
● The AMI Task Server is used for:

– Extracting metadata from primary sources (pull mode)

– (Re)Processing and storing metadata in AMI

● It can run any kind of tasks (shell, python, java, ...)

● Can optionally benefit from the AMI Java Core library

● Main features:

– Kind of super CRON

– The AMI Task Server is distributed

– Control and monitoring via MQTT

– Mutual exclusion mechanism between tasks (with the AMI Exclusion Server)

– Priority lottery scheduler for avoiding starvation (not real time)  

– Pipelined tasks with execution report

– Image in Docker Hub



16/11/22 AMI - JI 2022 25

AMI Task Monitoring (app based on the AMI MQTT micro-framework)



16/11/22 AMI - JI 2022 26

AMI Task Monitoring (app based on the AMI MQTT micro-framework)



16/11/22 AMI - JI 2022 27

AMI Task Monitoring (app based on the AMI MQTT micro-framework)



16/11/22 AMI - JI 2022 28

AMI Task Monitoring (app based on the AMI MQTT micro-framework)



16/11/22 AMI - JI 2022 29

AMI Pipeline features
● AMI provides a Node-RED-based low-code programming system for 

task pipeline definitions

● Image available on Docker Hub



16/11/22 AMI - JI 2022 30

3 commands to test the AMI ecosystem! 

git clone https://github.com/ami-team/AMIDemo.git

cd AMIDemo

docker-compose up

● Runs: AMI server, AMI Task Server, AMI Task Exclusion, AMI Pipeline, 
Eclipse Mosquitto with our JWT authentication plugin, ...

● See more information there:

– https://github.com/ami-team/AMIDemo



16/11/22 AMI - JI 2022 31

Conclusion



16/11/22 AMI - JI 2022 32

Conclusion
● AMI is mature metadata ecosystem of more than 20 years of existence

● AMI Java Core

– High level server-side JAVA library for processing metadata

i) High level primitives for manipulating metadata,

ii) Metadata Query Language (MQL),

iii) datasource connectivity.

● AMI Services + lightweight clients

– AMI HTTP command service (proprietary), REST API, MQTT server control and monitoring

● AMI Web Framework

– For developing metadata-oriented Web applications and graphic controls

● AMI Task Server

– Distributed system for extracting, processing and storing metadata

● AMI Pipeline

– Low-code programming for task pipeline definitions

● https://hub.docker.com/repository/docker/amiteam/

https://hub.docker.com/repository/docker/amiteam/


16/11/22 AMI - JI 2022 33

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

