AGATA computation control: from the crystal to the final measure

Roméo Molina¹²

Joint work with David Chamont¹, Fabienne Jézéquel², Vincent Lafage¹

¹ IJCLab, Paris-Saclay, France ²LIP6, Sorbonne Université, France

> JI 2022 15 November 2022

AGATA Advanced GAmma Tracking Array

AGATA Data flow¹

PSA Pulse Shape Analysis

PSA Pulse Shape Analysis

PSA Pulse Shape Analysis

perf allows to count the number of CPU cycles per function

⇒ We shall optimize Chi2InnerLoop!

perf allows to analyse the memory usage

⇒ coherent with cycles analysis

Know your tool hwloc-ls

Cache-misses

Cache-misses happen when the data is not in cache memory. The application have to attempt to find the data in slower memory that causes massive performance reduction.

- ⇒ In Chi2InnerLoop: 38% of cache-misses !
- \Rightarrow Memory bound algorithm

To reduce the cache-misses, our approach is to reduce the amount of data to make it fit in the cache.

To do so, we are interested in the data formats used in the PSA.

Is it possible to adopt a smaller format while maintaining the accuracy?

 \Rightarrow Credible because the material provides 14 bits of resolution, cast in 16 bits integers that are themselves cast in fp32...

The precision is artificially extended!

Increase precision for free

Using low precisions is promising

Floating-point arithmetic: Sign | Exponent | Mantissa

• Low precision increasingly supported by hardware

Great benefits:

- Reduced **storage**, data movement, and communications
- Reduced **energy** consumption (5× with fp16, 9× with bfloat16)
- Increased **speed** on emerging hardware (16× on A100 from fp32 to fp16/bfloat16)

• Some limitations too:

- Low accuracy (large *u*)
- Narrow range

Floating-point computation \neq mathematical evaluation

- rounding $a \oplus b \neq a + b$
- no more associativity $(a \oplus b) \oplus c \neq a \oplus (b \oplus c)$

Consequences:

- invalid results
- non reproducibility
- **•** performance issue (useless iterations)

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of high precision

Various approaches: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

- **Precision tuning:** autotuning based on the source code, my thesis area: CADNA / PROMISE...
	- \triangle Does not need any understanding of what the code does

Mix several precisions in the same code with the goal of

- **•** Getting the performance benefits of low precisions
- While preserving the accuracy and stability of high precision

Various approaches: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, . . .

How to select the right precision for the right variable/operation

- **Precision tuning:** autotuning based on the source code, my thesis area: CADNA / PROMISE...
	- \triangle Does not need any understanding of what the code does

Adaptive precision algorithms

- Given an algorithm and a prescribed accuracy, adaptively select the minimal precision for each computation
- ⇒ **Why does it make sense to make the precision vary?**
- Because not all computations are equally "important"!

and small elements produce small errors :

```
|fl(a opb)− a opb| ≤ u|a opb|, op ∈ {+,−,∗,÷}
```
⇒ **Opportunity for mixed precision:** adapt the precisions to the data at hand by storing and computing "less important" (usually smaller) data in lower precision

Before modifying the precisions used, we want to explore the current

Adaptive precision algorithms

- Given an algorithm and a prescribed accuracy, adaptively select the minimal precision for each computation
- ⇒ **Why does it make sense to make the precision vary?**
- Because not all computations are equally "important"! Example:

and small elements produce small errors :

|fl(*a* op*b*)− *a* op*b*| ≤ *u*|*a* op*b*|, op ∈ {+,−,∗,÷}

⇒ **Opportunity for mixed precision:** adapt the precisions to the data at hand by storing and computing "less important" (usually smaller) data in lower precision

Before modifying the precisions used, we want to explore the current accuracy.

Rounding error analysis

Several approaches

Interval arithmetic

- quaranteed bounds for each computed result
- the error may be overestimated
- specific algorithms
- ex: INTLAB [Rump'99]

Static analysis

- no execution, rigorous analysis, all possible input values taken into account
- not suited to large programs
- **e** ex: FLUCTUAT [Goubault & al.'06], FLDLib [Jacquemin & al.'19]

Probabilistic approach

- **e** estimates the number of correct digits of any computed result
- requires no algorithm modification
- can be used in HPC programs
- **e** ex: CADNA [Chesneaux'90], SAM [Graillat & al.'11], VERIFICARLO [Denis & al.'16], VERROU [Févotte & al.'17]

The CADNA library

<cadna.lip6.fr>

- \bullet implements stochastic arithmetic for $C/C++$ or Fortran codes
- \bullet few code rewriting
- all operators and mathematical functions overloaded
- support for MPI, OpenMP, GPU, vectorised codes
- **•** supports emulated ou native half precision
- in one CADNA execution: accuracy of any result, complete list of numerical instabilities

CADNA cost

- memory: 4
- run time ≈ 10

[Chesneaux'90], [Jézéquel & al'08], [Lamotte & al'10], [Eberhart & al'18],...

Discrete Stochastic Arithmetic (DSA) [Vignes'04]

• each operation executed 3 times with a random rounding mode

Discrete Stochastic Arithmetic (DSA) [Vignes'04]

- each operation executed 3 times with a random rounding mode
- number of correct digits in the results estimated using Student's test with the confidence level 95%

Discrete Stochastic Arithmetic (DSA) [Vignes'04]

- each operation executed 3 times with a random rounding mode
- number of correct digits in the results estimated using Student's test with the confidence level 95%
- operations executed synchronously
	- ⇒ detection of numerical instabilities
		- Ex: if $(A>B)$ with A-B numerical noise
	- ⇒ optimization of stopping criteria

To execute CADNA on the PSA, we essentially change the types.

To execute CADNA on the PSA, we essentially change the types.

This execution exposes multiple numerical instabilities that hide potential massive loss of accuracy.

CADNA C 3.1.11 software $CRITICAL$ WARNING: the self-validation detects major problem (s) . The results are NOT quaranteed. There are 2803679 numerical instabilities 124420 UNSTABLE MULTIPLICATION(S) 127753 UNSTABLE BRANCHING(S) 323243 UNSTABLE INTRINSIC FUNCTION(S) 266 UNSTABLE MATHEMATICAL FUNCTION(S) 2227997 LOSS(ES) OF ACCURACY DUE TO CANCELLATION(S)

What if I truncate floats to int and use this int as an index for a Look Up Table that stores cbrt?

What if I truncate floats to int and use this int as an index for a Look Up Table that stores cbrt?

Magical world: accuracy exiting the LUT is full!

What if I truncate floats to int and use this int as an index for a Look Up Table that stores cbrt?

Magical world: accuracy exiting the LUT is full!

Without the LUT, we obtain around 6 exact correct digits

- **•** Identify and fix numerical instabilities
- Explore further the actual accuracy of the PSA
- Explore smarter minimum research algorithms
- Experiment the use of fp16 and bf16
- Find the faster, enough accurate cbrt
- **•** Implement mixed-precision in the PSA

| \equiv J. Vignes, Discrete Stochastic Arithmetic for Validating Results of Numerical Software, Num. Algo., 37, 1–4, p. 377–390, 2004.

 \equiv P. Eberhart, J. Brajard, P. Fortin, and F. Jézéquel, High Performance Numerical Validation using Stochastic Arithmetic, Reliable Computing, 21, p. 35–52, 2015. <https://hal.archives-ouvertes.fr/hal-01254446>

CADNA: <http://cadna.lip6.fr>

Thank you for your attention!