

GPU memory ressource management for Graph Neural Network (GNN) training on large graphs

14^{ème} Journées Informatiques IN2P3/IRFU (14-17 novembre 2022) Sylvain Caillou (On behalf of L2IT « Computing, Algorithms and Data » Team)

The rise of geometric ML and representation learning

- \Rightarrow Geometric and graph-based ML methods have become one of the hottest fields of AI research
- \Rightarrow Graph Neural Networks (GNNs) capture deep geometric and structural patterns in data represented as graph

Graph-based ML in HEP

Since 2020 Graph-based ML algorithms are becoming increasingly popular for a large number of LHC physics tasks, including:

- Track Reconstruction
- Vertex Reconstruction
- Calorimeter Clustering
- Jet Clustering
- Event Reconstruction (Pileup Rejection, Particle Flow, Jet Assignment)

Now working to integrate Graph ML in production for in-line and off-line data processing systems

- \Rightarrow Starting to be use in Astrophysics, cosmology, nuclear physics, ...
- ⇒ Nature of physic experimental data brings to large graph representation and computing challenges for Graph-based ML algorithms

September/October 2021

HL-LHC and unprecedented challenges for software and computing

⇒ In 2028, the rate of collisions provided by the LHC to the ATLAS detector will be increased by an order of magnitude.

- ⇒ Existing tracks reconstruction algorithms based on *Kalman Filter* won't fit the combinatorics and will require unrealistic amount of CPU ressources
- \Rightarrow The HL-LHC physics program could not be completed (obviously not an option !)

GNN for charged particles tracking in ATLAS ITk

Graph Neural Networks (GNNs) perform pretty well to learn geometric pattern of the tracks

Close collaboration L2IT & ExatTrkX started in 2021 to construct a GNN-based track reconstruction algorithm for ATLAS ITk

First results on ITk published in 2022 more than encouraging

ATLAS ITk Track Reconstruction with a GNN-based pipeline, C.Rougier et al., CTD 2022 Graph Neural Network track reconstruction for ATLAS ITk , D. Murnane et al., IML 2022

- ⇒ GNN-based algorithms now appear as competitive solutions for the future generation of charged particle track reconstruction algorithms which will have to be put into production for the HL-LHC
- \Rightarrow But to get this results we have to train our GNNs on very large graphs...

p_[GeV]

Data representation as graph

A graph represents the relations (edges) between a collection of entities (nodes).

Graph connectivity is represented as an Adjency matrix or in COO format

Graph Neural Networks models (Message Passing paradigm)

¹⁴ème Journées Informatiques IN2P3/IRFU (novembre 2022)

Graph Neural Networks models (Message Passing paradigm)

Neural Networks training and memory consumption

The never ending battle of the GPU memory consumption

Neural Networks training and memory consumption

Specific configuration CC support

•••

Distributed Data Parralel

- \Rightarrow Distribute data
- \Rightarrow Share model

 \Rightarrow Computation operate on distributed data between GPUs with copy of the same model (same weights)

update shared model

 $backward: update f_n \forall n$

- \Rightarrow Usefull to distribute inputs between GPUs
- \Rightarrow Can be use for GNN models if the graphs are small (i.e. X_0 contains several small graphs)
- If the graphs are large (i.e. X_0 contains only one graph) and it can not be cut

⇒So Distributed Data Parralel approach is not a solution in case of large graph which won't fit in only one GPU

Distributed Model Parralel

- \Rightarrow Distribute model
- \Rightarrow Share data
- \Rightarrow Computation of share data is distributed between GPUs: Each GPU compute a part of the model

Usefull for models with a very large number of parameters (language model actually up to $O(10^{12})$ parameters) \Rightarrow Distribute between GPUs:

- \Rightarrow Memory to store model parameters
- \Rightarrow Computation time

⇒Useless to solve GNN GPU memory consumption on large graph (whatever the number of model parameters)

Optimizer states and gradient offload

 \Rightarrow Swap on CPU all memory wich is not immediatly needed for computation

 \Rightarrow Swap back from CPU to GPU tensors wen they are needed

IBM: <u>Tensorflow Large Model Support (TFLMS)</u> and <u>Pytorch Large Model Support (PLMS)</u> DeepSpeed: <u>ZeRO-Offload</u>

Pros: Allows to train very large model on large data Cons: Slow down (a lot) the training beacause of I/O swapping between CPU host and GPU

Checkpointing

 \Rightarrow Checkpoint layers during forward pass

 \Rightarrow Intermediate states of checkpointed layers won't be store

 \Rightarrow Intermediate states will have to be recompute during backward pass

Pros: Save memory (depends of level of checkpointing)

Cons: Come with a cost in time

14ème Journées Informatiques IN2P3/IRFU (novembre 2022)

Checkpointing

What about sobriety ?

Applying checkpointing (in our use case) \Rightarrow We divide by O(10) the time for training

Merci de votre attention

Backup

100 layers...

