

BOSON DE HIGGS DE HIGGS 10 ans après, l'aventure continue

10 ans de découvertes au LHC Yves Sirois

Fabiola Gianotti et Joe Incandela, porte-paroles d'ATLAS et CMS en 2012

http://www.elsevier.com/locate/physletb

Chronologie Evidences, Observations et Mesures

RUNI $\sim 5 \text{ fb-1 à } \sqrt{s} = 7 \text{ TeV}$ $\sim 10 \text{ fb-1 à } \sqrt{s} = 8 \text{ TeV}$

- Observation d'un boson à 125 GeV
- Détermination du spin et de la parité
- Observation de $H \rightarrow \gamma\gamma$, ZZ et WW
- Évidence pour $H \rightarrow \tau \tau$

ATLAS + CMS

- Observation de la production ggH et VBF
- Evidence pour les productions VH et ttH
- Mesure des propriétés du boson H

RUNII 2016-2018~ 140 fb-1 à $\sqrt{s} = 13$ TeV

- Observation de H $\rightarrow \tau\tau$ et H \rightarrow bb
- Observation des productions VH et ttH
- Évidence pour $H \rightarrow \mu\mu$
- Évidence pour $H \rightarrow Z\gamma, H \rightarrow II\gamma$
- Mesures de la largeur intrinsèque
- Recherche de production de paires HH

Ici : emphase sur le sens physique illustré par quelques résultats

Juillet 2013 Prix HEPP de la Société Européenne de Physique

ATLAS et CMS pour la **découverte d'un boson de Higgs**, tel que prédit par le **mécanisme BEH ...**

Octobre 2013 Prix Nobel

Découverte théorique d'un mécanisme qui contribue à notre compréhension de l' **origine de la masse des particules** ... confirmée par la découverte de ATLAS et CMS

Une question de masse

La question de la nature et de l'origine de la masse :

- Traverse toute l'histoire de la physique moderne
- Prend toute son ampleur avec l'interaction faible
- Est reliée à l'origine de la matière et des interactions
- Bouleverse le récit de la naissance de l'Univers

Newton

 $F = \boldsymbol{m} a$

Cinématique : masse inertielle

 $F = \frac{G M m}{r^2}$ Dynamique : masse gravitationnelle

La matière ordinaire

Électrodynamique quantique On injecte m_e et m_p dans la théorie

Noyau Atomique

g = gluonspin = 1

 $\overline{p} \Leftrightarrow u \ u \ d_{2/3} \overset{2}{_{2/3}-1/_{3}}$

Chromodynamique quantique

- Le proton est constitué de quarks spin = 1/2
- $m_p \gg \Sigma m_q \iff$ masse d'origine dynamique !

Toute la simplicité du monde

Un vieux rêve réductionniste

Empédocle - V^e siècle av. J.C.

Fermions de matière (spin 1/2)

E

electron neutrino

electron

Bosons vecteurs d'interaction (spin 1)

photon

Force nucléaire forte

Force électromagnétique

• Il existe aussi une interaction faible

Le neutrino n'interagit que par cette interaction faible

Temps

L'interaction faible

- Responsable d'une instabilité intrinsèque des particules de matière
 - p libre : stable n libre : instable noyaux lourds : radioactif (p ou n instable)
 - Radioactivité
 - Traitement du cancer

udd

n

Marie Skłodowska-Curie

 v_{e}

- 50% de la production de chaleur de la Terre !

Équivalent de ~ 50 000 réacteurs nucléaire 🗇 mesuré grâce aux v's

udd

- Régulation de l'énergie produite par le Soleil !

Fondations en péril

- L'interaction faible est de très courte portée (boson Z⁰ et W[±] massifs)
- Impossible de préserver les fondements théoriques (les symétries) pour une interaction véhiculée par des bosons vecteurs massifs

Toutes les particules doivent être de masses nulles !

Préserver l'essentiel

Il faut préserver les fondements de la théorie et donc préserver les symétries (i.e. les principes d'invariance)

On conserve le contenu !

Il faut pouvoir admettre l'existence de particules massives compte tenu de l'interaction faible

On change le contenant !

La masse des particules apparaît lorsque les champs d'interaction et de matière sont plongés dans le « vide » physique !

Mécanisme de Brout-Englert-Higgs

Avant la brisure de symétrie :

Deux doublets complexes 4 composantes de champ H

La brisure de symétrie :

10⁻¹² s, 10¹⁷ °K

Masse du photon = 0 Masse des bosons Z^0 et $W^{\pm} \neq 0$ Un champ scalaire H subsiste

Prédiction de l'existence d'un boson scalaire H

2011-2012 Recherche de signatures charactéristiques du boson de Higgs

 $\textbf{H} \rightarrow \textbf{ZZ}^{\star} \rightarrow 4~\mu$

 $H \rightarrow \gamma \gamma$

ATLAS

CMS

R.N./Y.S. - 18 mai 2022

La possibilité d'un île

- « *La nature est généreuse » avec* ce choix de masse pour le boson H Accès à de très nombreux modes de production x désintégration ! *Fabiola Gianotti, 4 juillet 2012*
- ... mais sournoise !

- Toutes les pistes sont brouillées !
- Triomphe du découplage ?

La fragilité du vide

• ... et malicieuse !

Les particules lourdes au LHC : m_{top} = 173,29 ± 0,95 GeV m_H = 125,09 ± 0,24 GeV ⇔ métastabilité du vide !

 Le fait que m_H soit arbitraire et non protégée dans la théorie introduit des problèmes de naturalité et de hiérarchie

> SUSY : m_H calculable 5 bosons : h, H, A, H[±]

Un Univers improbable ? De la nouvelle physique ?

De la cohérence de la théorie

- Rôle privilégié du quark top $(y_t \sim 1)$
- Modèle standard sur contraint
- Prédiction théorique précise de m_W (m_H,m_{top})

 Juste une légère tension persistante ou la nouvelle « périhélie de mercure » ? Vector-like quarks ? Nouveaux bosons ? Supersymétrie ? Matière noire ?

Action du champs de Higgs

- Propriété unique du champ scalaire de Higgs : $< H > \neq 0$
- Le champ de Higgs imprègne tout l'Univers, en permanence !
- Les particules de matière acquièrent une masse en interagissant sans cesse avec le champ de Higgs !

Découverte de l'origine de la masse des fermions

La **masse d'une particule de matière** est la conséquence d'un mélange quantique induit par le champ de Higgs !

Run 1 : 1^{ère} évidence

Seuil d'observation atteint en combinant les canaux H \rightarrow bb et H $\rightarrow \tau \tau$

L'existence d'une 4^e famille de fermions chiraux est exclue !

Découverte de l'origine de la masse des fermions

Run 2 : Observation des désintégrations $H \rightarrow \tau \tau$, $H \rightarrow bb$ et de la production ttH

 $1.04 \pm 0.14 \pm 0.14$

7

8 9

Best fit µ

5

Combined

 $H \rightarrow bb$

L'interaction avec le champ de Higgs est bien à l'origine de la masse des fermions de matière au moins pour la 3^e famille !

Toute la richesse du monde

- Mécanisme BEH (m_z m_w) + interactions de Yukawa (m_l, m_q)
- La structure du vide (champ de Higgs) à l'origine de complexité de la matière ?

 γ, Z^0, W^{\pm}

Mécanisme BEH

Fermions

Interaction avec le champ de Higgs

- Les interactions quantiques (spin 1) ne distinguent pas les 3 familles ! e, μ et τ identiques à la masse près
- La propagation dans le vide révèle l'existence des familles

Familles et test de (non-)universalité

- Il existe 3 familles identiques (à la masse près) de leptons et de quarks
- Les 3 familles de fermions de même charge se mélangent (quarks ou neutrinos)
- La saveur paraît strictement conservée dans la désintégration des leptons chargés (μ^{\pm} , τ^{\pm})
- Le champ de Higgs n'explique pas la structure en masse des fermions de matière
- Des « anomalies » sont observées par ailleurs (g-2 dans CDF, b \rightarrow s $\ell^+\ell^-$ dans LHCb ...)

ATLAS:2.0 σ CMS:3.0 σ

Prochaine étape (Run 3) :

Observation de H $\rightarrow \mu\mu$

Objectif à terme (HL-LHC) :

Mesure précise du rapport H $\rightarrow \mu\mu$ / H $\rightarrow \tau\tau$

La masse est dite

Runs 1 + 2

L'intensité de l'interactions entre le boson H et chaque particule du modèle standard doit être proportionnel à la masse

Les observations sont en accord avec la prédiction du modèle standard pour un seul boson H associé au champ de Higgs

On comprend l'origine (quantique) de la masse inertielle des particules de matière et d'interaction !

Traquer l'invisible

La structure du vide dans l'Univers

L'auto-couplage du boson de H est lié à la forme du potentiel dans le vide !

comb

Production de paire HH

~

Production de paire HH

HH Workshop – Dubrovnik 30 mai – 3 juin 2022

On atteint ~ σ_{HH} < 2 x SM (ATLAS+CMS) !

Objectif à terme (HL-LHC): Mesure de λ_{HHH}

Conclusion

- L'aventure du LHC ne fait que commencer ! ×2 au Run 3, ×10 à HL-LHC
- Déjà une moisson remarquable de découvertes et d'avancées :
 - Découverte du boson H Mécanisme BEH
 - Exclusion définitive d'un 4^e famille de fermions standards
 - Couplage des particules de matière au champ de Higgs dans le vide
 ⇔ Origine de la masse (matière et interaction) !
 - Limite contraignantes aux modes de désintégration invisible \Leftrightarrow Meilleures contraintes sur la matière noire (WIMPs) pour $m_{\chi} < m_H/2$
 - Améliorations considérable de la sensibilité à l'auto-couplage
 ⇔ Accès à terme à la structure du vide avec possiblement des conséquences majeures (asymétrie matière-antimatière ? ondes gravitationnelles ?)
- Et l'ouverture de nouveaux portails vers le côté sombre de l'Univers

nature

Article

A portrait of the Higgs boson by the CMS experiment ten years after the discovery

nature

Article

A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery

4th of July 2022

 $\kappa_V m_V / \text{vev}$

1.15