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Atmospheric neutrinos

Atmospheric neutrinos are created by
the interactions of primary cosmic rays
with the nuclei of the atmosphere

Primary cosmic rays are mainly
composed of protons, with a small
component of heavier nuclei

Interactions of these primary cosmic
rays with the nuclei of the atmosphere
generate secondary cosmic rays, which
include all hadrons and their decay
products

Energy spectrum peaked in the GeV
range and extends to higher energy
with an approximated power law

L. Anchordoqui et al., Int. J. Mod. Phys. A18, 2229 (2003)
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Atmospheric neutrinos (cont’d)

Among hadrons, many secondary pions
are produced and decay through:

π± −→ µ± +(−)
νµ

At high energies, kaons also contribute
to the production of µs and νs

Some muons can decay before hitting
the ground through:

µ± −→ e± +(−)
νµ +(−)

νe

Neutrinos generated in these reactions
are called atmopheric neutrinos

If 100 MeV ≲ Eν ≲ 100 GeV, they can
be detected in underground
experiments (in order to be shielded
from the flux of secondary muons)

p

π−
π+

µ−

µ+

e−

e+

νµ
ν̄µ

νµν̄µνe ν̄e
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The atmospheric neutrino anomaly

At low energies E ≤ 1 GeV for which most muons decay before hitting the ground,
the neutrino fluxes satisfy the following ratios

ϕνµ + ϕν̄µ

ϕνe + ϕν̄e
∼ 2

ϕνµ

ϕν̄µ

∼ 1 ϕνe

ϕν̄e
∼

ϕµ+

ϕµ−

At higher energies, the fraction of muons which hit the ground before decaying
increases, leading to an increase of the flavor ratio

(
ϕνµ + ϕν̄µ

)
/
(
ϕνe + ϕν̄e

)
First observation of atmospheric neutrinos in 1965 by detectors located in gold
mines (South Africa & India) ⇒ detection of horizontal µ produced by neutrino
interaction with scintillators w/ 8000 mwe overburden

In the second half of the 1980s, atmopheric neutrinos began to be observed by the
large underground Kamiokande and IMB water Cerenkov experiments (initially build
to observe nucleon decay)

Both experiments observed a number of atmospheric muons neutrino interactions
significantly smaller than the predicted one ⇒ atmospheric neutrino anomaly
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Atmospheric neutrinos energy flux

Detailed simulations are required
to compute the neutrino flux
taking into account cosmic ray
flux, complex hadron
interactions, geomagnetic field,
solar activity, etc...

Dominant uncertainties: cosmic
ray flux (20% below 100 GeV,
30% above) and hadronic
interactions (20-25%)

Spoiler alert: on top of that,
oscillations! Appearance of ντ

and complicated matter effect of
neutrinos travelling through Earth /GeV)
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E. Richard et al. (SK collab.) Phys. Rev. D 94, 052001 (2016)

⇒ 5 orders of magnitude of neutrino energy in atmospheric experiments
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What about the baseline?

Earth

detector

atmosphere

θ

cos θ = −0.8
L = 10000 km

cos θ = 0.8
L = 20 kmcos θ = 0

L = 500 km

cosmic ray
neutrino

Range of pathlength of atmospheric neutrinos is very wide from about 15 km for vertical
downward-going neutrinos to 1.3 × 104 km for upward-going neutrinos

L/E ratio allows to investigate 10−4 < ∆m2 < 10 eV2 (assuming pathlength ≳ 100 km)[
Remember that oscillations are observables if sin2

(
∆m2L

4E

)
∼ π/2

]
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Water Cherenkov detectors

Detection of neutrinos in real-time by observing the tracks of the ultrarelativistic
charged leptons produced by neutrino interactions

When a charge particle passes with velocity v > 1/n through a medium with index
of refraction n, it emits Cherenkov light in a cone around direction of the motion

Half-opening angle cos θ = 1/nv (water, n = 1.33, θ ∼ 42◦) and spectrum:

dN
dλdx = 2πα

[
1 −

( 1
nv

)2]
λ−2,

where N is the number of photons, λ the wavelength, and x the coordinate along
the track

λ = 300-600 nm, appropriate for detection using photomultiplier tube (PMT)
⇒ through observation of photons with a precise determination of arrival time at
each PMT, one can determine vertex, direction and energy of charged lepton

Large mass of water surrounded by PMTs (need substantial coverage ≳ 20%)
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PhotoMultiplier Tubes (PMTs)

Courtesy of SK collaboration
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Cherenkov effect

Case of an immobile particle

immobile particle
wavefronts
direction of propagation of the light wave

λ0

v1 = c/n
T = λ0/v1

particule moving with v < c/n
wavefronts
direction of propagation of the light wave

Case particle moving with v < c/n (Doppler effect)

v⃗

vT

λ > λ0

λ = λ0(1 + v/v1)

light shifted to red

λ < λ0

λ = λ0(1 − v/v1)

light shifted to blue

particule moving with v = c/n
wavefronts
direction of propagation of the light wave
wavefront moving along with the particule

Case particle moving with v = c/n

v⃗

Case particle moving with v > c/n

v⃗
α

θc

sin α = c/nv = cos θc

at t
at t+dt

particule moving with v = c/n
wavefronts
direction of propagation of the
light wave
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An example: the Super-Kamiokande detector

50 kton water Cherenkov detector

Located in Kamioka, Japan, under Mt.
Ikenoyama : 1 km rock overburden
(2.7 km water equivalent)

Optically divided into an inner detector
(ID) with a fiducial volume of 22.5 kton
and an outer detector (OD),
instrumented with:

- ID : 11146 inward facing large
20”-PMTs, 40% photo-coverage

- OD : 1885 8”-PMTs primarily
used as veto

42 m

39.3 m
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An example: the Super-Kamiokande detector (cont’d)
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Event topological classification

Depending on the topology and ID and OD activities
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Phys. Rev. D97, 072001 (2018)MC simulations
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Particle identification at Cherenkov detectors

e-like ring µ-like ring

Super-Kamiokande IV
Run 61964 Sub 32 Event 6230981


09-04-01:00:37:00

Inner: 868 hits, 1995 pe

Outer: 2 hits, 1 pe

Trigger: 0x10000007

D_wall: 377.3 cm

Evis: 200.7 MeV

e-like, p = 200.7 MeV/c
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Super-Kamiokande IV
Run 61999 Sub 338 Event 65680795


09-04-01:06:36:12

Inner: 1245 hits, 2653 pe

Outer: 3 hits, 2 pe
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Courtesy of SK collaboration

Excellent particle identification (PID) obtained from the sharpness of the edge of the
Cherenkov ring

The multiple scattering of electrons is large, so electromagnetic showers produce
fuzzy rings. Highly relativistic muons, in contrast, travel almost straight through the
detector and produce rings with sharp edges.
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Measured flavor ratio-of-ratios by atmospheric experiments

Detection of the produced charged lepton in CC interactions

νl + N → l− + X ν̄l + N → l+ + X l = (e, µ, τ)

No magnetization = no sensitivity to lepton charge = no difference between
neutrino and antineutrinos

τ leptons decay immediately = no track can be seen

Ratio-of-ratios:

Rµ/e = (Nµ−like/Ne−like)data

(Nµ−like/Ne−like)MC

Experiments Kamiokande IMB Soudan2 Super-Kamiokande

Rsub-GeV
µ/e 0.60 ± 0.09 - 0.69 ± 0.12 0.658 ± 0.038

Rmulti-GeV
µ/e 0.57 ± 0.11 0.54 ± 0.12 - 0.702 ± 0.106

*Soudan2 is not a water Cherenkov detector but an iron tracking calorimeter

⇒ ratio significantly lower than unity (more than 8σ for SK) ≡ νµ disappearance
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How to win a Nobel prize?

Y. Ashie et al. Phys. Rev. D71, 2005

N
u

m
b

er
 o

f 
ev

en
ts

0

100

200

300

400
Sub-G 1-R e-like

0

200

400

600
Sub-G 1-R µ-like

0

50

100

Multi-G 1-R e-like

0

50

100

150 Multi-G 1-R µ-like

0

50

100

-1 -0.5 0 0.5 1

cosθ

Multi-G Multi-R e-like

0

50

100

150

-1 -0.5 0 0.5 1

cosθ

Multi-R µ-like

In order to test the hypothesis of
neutrino oscillation, one can vary the
pathlength travelled by neutrinos

If no oscillation :

Nl(cos θ) = Nl(− cos θ)
(l = e, µ)

Equation is verified for electron events
but not the case for muons events

On the plots, blue boxes are MC
predictions and red dashed lines the
best-fit expectations for νµ ↔ ντ

oscillations with sin2 2θ = 1 and
∆m2 = 2.5 × 10−3 eV2

Nobel prize 2015 awarded to T. Kajita
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Oscillation of atmospheric neutrinos in the 2ν framework

(L/E)atm observed ratios cover 10−4 < ∆m2 < 10 eV2 squared-mass region

⇒ ∆m2
21( L

E )atm ≪ 1

in most of the cases and we can neglect the ∆m2
21 contribution

Reactor experiments (Double Chooz, Daya Bay & RENO) and accelerator
long-baseline experiments (T2K, NOνA) have measured θ13 to be small

Atmopheric neutrinos disappearance comes from νµ ↔ ντ oscillations

Patm
ee ∼ 1 − O(θ13, ∆m2

21)

Patm
µµ ∼ 1 − Patm

µτ ∼ 1 − sin2 2θ23 sin2
(∆m2

31L
4E

)
with sin2 2θ23 ∼ 1 and |∆m2

31| ∼ 0.0021 eV2
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Oscillatory signal in atmospheric neutrinos

Y. Ashie et al. Phys. Rev. Lett. 93, 101801 (2004)
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black solid histogram shows the best fit expectation for νµ ↔ ντ oscillations
with sin2 2θ = 1 and ∆m2 = 2.4 × 10−3 eV2 in the 2ν oscillation framework

∗please don’t consider the red dashed and blue dotted lines which correspond to best-fit expectation for ruled
out scenarios (neutrino decay / neutrino decoherence)
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Modern atmospheric neutrinos results

Nowadays, always perform analysis in the 3ν-framework

Assuming m1 ≃ m2, atmospheric ν’s probe ∆m2 = ∆m2
32 ∼ ∆m2

31 and all mixing
matrix elements Uα3

Ue3 = − sin θ13e−iδCP , Uµ3 = sin θ23 cos θ13, Uτ3 = cos θ23 cos θ13[
please notice that U2

e3 + U2
µ3 + U2

τ3 = 1 for unitarity
]

Sensitivity to θ13 and to δCP

Take matter effects into account ⇒ sensitivity to the mass hierarchy
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What is the mass hierarchy?

two possibilities for the neutrino mass spectrum
[m

as
s]2

NORMAL INVERTED

νe

νµ

ντ

ν3 ν2

ν1

ν2

ν1 ν3

∆m2
31 > 0 ∆m2

31 < 0

NB: we know that the mass state containing most νe is the lighter of the two “solar mass” states
∆m2

21 ≡ m2
2 − m2

1 > 0 and θ12 < 45◦ thanks to the observation of the matter effect in the Sun
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Atmospheric neutrinos and mass-hierarchy determination

Mass-hierarchy can be accessed through matter effects in the 3ν-oscillation
framework, the longer the baseline, the higher the effects

P(νµ → νe) P(ν̄µ → ν̄e)

Normal Hierarchy

Resonance

Phys. Rev. D97, 072001 (2018)

Mass-hierarchy determined with upward-going multi-GeV νe sample
- Normal hierarchy : enhancement of P(νµ → νe)
- Inverted hierarchy : enhancement of P(ν̄µ → ν̄e)

Sensitivity enhanced if ν/ν̄ separation
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SK atmospheric neutrinos results (2020)

Results shown here are with θ13 constrained by reactor experiments

Data favors first octant for θ23

Data favors NH at 1.7σ
∆χ2(IH) − ∆χ2(NH) = 2.8

δCP best fit agrees with that of T2K

Some constraining power over θ13

consistent with LBL results

PMNS official, SK collaboration, june 2020
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ντ appearance at Super-Kamiokande

Results taken from Phys.Rev.D 98
(2018) 5, 052006

τ leptons produced in CC ντ

interactions decay quickly to
secondary particles ⇒ not possible
to directly detect τ in SK

Leptonic τ decay look quite similar
to atmospheric CC νe or νµ

Hadronic decays are dominant and
produce one or more pions ⇒
allows separation of CC ντ signal
from CC νµ, CC νe and NC
background

Results excludes no-tau appearance
at 4.6σ

Super-Kamiokande IV
Run 999999 Sub 2 Event 7 
16-04-13:05:43:18

Inner: 8104 hits, 30188 pe

Outer: 3 hits, 2 pe

Trigger: 0x07

D_wall: 1130.7 cm

Evis:   3.3 GeV

 

Charge(pe)
    >26.7
23.3-26.7
20.2-23.3
17.3-20.2
14.7-17.3
12.2-14.7
10.0-12.2
 8.0-10.0
 6.2- 8.0
 4.7- 6.2
 3.3- 4.7
 2.2- 3.3
 1.3- 2.2
 0.7- 1.3
 0.2- 0.7
    < 0.2

0 mu-e
decays
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2720
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Neutrino telescopes - Event energies and topologies

MeV GeV TeV PeV

Sun

Supernovae

Nuclear Reactors

Earth

Accelerators HE Astrophysical ν

Atmospheric Neutrinos

ν Telescopes

Tracks
Traditional ν astro channel
Angular uncertainty ∼ 0.5◦

Cascades / showers
Angular uncertainty ∼ 3 − 10◦

Good energy estimate

νµCC (dominant)
ντ CC w/ τ decaying into µ (minor) everything else (including νµCC)

Astro : Atm. ν : Atm. µ

1 : 104 : 1010
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ANTARES (Mediterranean Sea)

Twelve lines of
25 storey each

Three 10” PMTs
per storey

(885 in total)

∼ 10 Mton
instrumented

volume

Peak photon
attenuation length
∼ 50 m (absorption

dominated)

∼ 70 m

12.5 m 350 m

Th. A. Mueller Atmospheric neutrino experiments September 7, 2022 24 / 29



IceCube (South Pole)

∼ 600 Mt

∼ 15 Mt for
DeepCore

One 10” PMT per
optical sensor

Peak photon
attenuation length
∼ 45 m (scattering

dominated)
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νµ disappearance at IceCube

Resuts taken from Phys.Rev.Lett. 120 (2018) 071801

1022 days livetime (2012-14)

41599 events (full-sky)

Best fit sin2 θ23 = 0.51+0.07
−0.09, ∆m2

32 = 2.31+0.11
−0.13 × 10−3 eV2
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νµ disappearance at ANTARES

Results taken from JHEP 06, 113 (2019)

2830 days livetime (2007-16)

7710 events

Best fit θ23 = 45◦ ± 12◦, ∆m2
32 = (2.0 ± 0.3) × 10−3 eV2
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ντ appearance at IceCube

Results taken from Phys. Rev. D 99 (2019) 3, 032007

Search for a statistical excess of cascade-like ν events which are the signature of ντ

interactions

Absence of ντ appearance excluded at 3.2σ
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Future of atmospheric neutrino experiments

Competition with long baseline accelerator experiments (T2K, NOνA,
Hyper-Kamiokande, DUNE) on “atmospheric parameters” (θ23, ∆m2

32)

Atmospheric neutrinos have still a major role to play for the determination of the
θ23 octant and the mass hierarchy, which are required for the subsequent study of
CP violation in the leptonic sector

The possibility to study many oscillation channels within a single experiment will
allow to test PMNS unitarity

Future experiments:
- Hyper-Kamiokande → 8× SK fiducial volume
- PINGU → IceCube upgrade to lower threshold below 5 GeV
- ORCA → KM3Net detector optimised for atmospheric neutrino oscillation

studies at energies of a few GeV
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