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Atmospheric neutrinos
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Atmospheric neutrinos

"
@ Atmospheric neutrinos are created by "t
the interactions of primary cosmic rays :: 8 e ]
with the nuclei of the atmosphere ol By
10’“: ;
@ Primary cosmic rays are mainly 1o ]
composed of protons, with a small T;m—mi ]
component of heavier nuclei ow ’?—:
Dol ]
@ Interactions of these primary cosmic w"L’ 1o Sx10- M gy, 1
rays with the nuclei of the atmosphere i“"“f AX10 T gy ]
generate secondary cosmic rays, which ?:z:: Conio o, ooy ]
include all hadrons and their decay ol Fe x 1071 oy, °“ i
products Lo il
W e ¢ e 1
@ Energy spectrum peaked in the GeV el 4 s ]
range and extends to higher energy ol 5 e s Al
with an approximated power law NS AR (s B o

Kinetic Energy Per Nucleus [GeV]

R.L. Workman et al. (PDG), Prog. Theor. Exp. Phys., 083C01 (2022)

Th. A. Mueller Atmospheric neutrino experiments. September 7, 2022 2/29



Atmospheric neutrinos

@ Atmospheric neutrinos are created by 10000
the interactions of primary cosmic rays
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Atmospheric neutrinos (cont’d)

Among hadrons, many secondary pions
are produced and decay through:

ot Mi +(I;L

@ At high energies, kaons also contribute
to the production of us and vs

@ Some muons can decay before hitting
the ground through:

(=) (=)
,ui — ei + vy + Ve

@ Neutrinos generated in these reactions
are called atmopheric neutrinos

e If 100 MeV < E, < 100 GeV, they can
be detected in underground
experiments (in order to be shielded

from the flux of secondary muons)
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The atmospheric neutrino anomaly

@ At low energies E < 1 GeV for which most muons decay before hitting the ground,
the neutrino fluxes satisfy the following ratios
d)l/“, +¢l7“, ~ 2 d)Vu ~ ¢ue -~ ¢;U
Pv. + Do, oo, boe P

@ At higher energies, the fraction of muons which hit the ground before decaying
increases, leading to an increase of the flavor ratio (¢V# + ¢;#)/(¢VE + qzﬁl—,e)

o First observation of atmospheric neutrinos in 1965 by detectors located in gold
mines (South Africa & India) = detection of horizontal ;. produced by neutrino
interaction with scintillators w/ 8000 mwe overburden

@ In the second half of the 1980s, atmopheric neutrinos began to be observed by the
large underground Kamiokande and IMB water Cerenkov experiments (initially build
to observe nucleon decay)

@ Both experiments observed a number of atmospheric muons neutrino interactions
significantly smaller than the predicted one = atmospheric neutrino anomaly
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Atmospheric neutrinos energy flux

@ Detailed simulations are required
to compute the neutrino flux
taking into account cosmic ray
flux, complex hadron
interactions, geomagnetic field,
solar activity, etc...

@ Dominant uncertainties: cosmic
ray flux (20% below 100 GeV,
30% above) and hadronic
interactions (20-25%)

@ Spoiler alert: on top of that,
oscillations! Appearance of v,
and complicated matter effect of
neutrinos travelling through Earth

E2® [GeV cm? seclsr]]

E. Richard et al. (SK collab.) Phys. Rev. D 94, 052001 (2016)
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= 5 orders of magnitude of neutrino energy in atmospheric experiments
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What about the baseline?

0 cosf = 0.8
cosf =0 R 4 L =20 km
L =500 km

detector | °

cosf = —0.8
L = 10000 km

cosmic ray 2
- - - - neutrino atmogphere

Range of pathlength of atmospheric neutrinos is very wide from about 15 km for vertical
downward-going neutrinos to 1.3 x 10* km for upward-going neutrinos

L/E ratio allows to investigate 10~* < Am? < 10 eV? (assuming pathlength > 100 km)

Remember that oscillations are observables if sin’ (%) ~ /2 }
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Water Cherenkov detectors

@ Detection of neutrinos in real-time by observing the tracks of the ultrarelativistic
charged leptons produced by neutrino interactions

o When a charge particle passes with velocity v > 1/n through a medium with index
of refraction n, it emits Cherenkov light in a cone around direction of the motion

o Half-opening angle cos@ = 1/nv (water, n = 1.33, 6 ~ 42°) and spectrum:

dN 1 _
M = 27TO£|:1 — (E)z]A 2,

where N is the number of photons, A\ the wavelength, and x the coordinate along
the track

@ )\ = 300-600 nm, appropriate for detection using photomultiplier tube (PMT)
= through observation of photons with a precise determination of arrival time at
each PMT, one can determine vertex, direction and energy of charged lepton

@ Large mass of water surrounded by PMTs (need substantial coverage > 20%)
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PhotoMultiplier Tubes (PMTs)
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Courtesy of SK collaboration T. Toyama et al. (CTA consort.) arXiv:1307.5463 [astro-ph.IM] (2013)
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Cherenkov effect

Case of an immobile particle

vi=c/n
T = )\O/Vl
. . . v
° immobile particle
~— > wavefronts
77777 direction of propagation of the light wave
September 7, 2022 9/29
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Cherenkov effect

Case particle moving with v < ¢/n (Doppler effect)

A > Ao
A= )\o(l-i- V/Vl)

A< Ao
A= )\0(1 — V/Vl)

light shifted to red light shifted to blue

° particule moving with v < ¢/n
~— > wavefronts
77777 direction of propagation of the light wave
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Cherenkov effect

Case particle moving with v = ¢/n

° particule moving with v = ¢/n
~— >~ wavefronts
————— direction of propagation of the light wave
wavefront moving along with the particule
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Cherenkov effect

Case particle moving with v > ¢/n

sina = ¢/nv = cos 0.

att

particule moving with v = ¢/n
wavefronts

direction of propagation of the
light wave
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An example: the Super-Kamiokande detector

@ 50 kton water Cherenkov detector

o Located in Kamioka, Japan, under Mt.
Ikenoyama : 1 km rock overburden
(2.7 km water equivalent)

@ Optically divided into an inner detector
(ID) with a fiducial volume of 22.5 kton
and an outer detector (OD),
instrumented with:

- ID : 11146 inward facing large
20"-PMTs, 40% photo-coverage

- OD : 1885 8"-PMTs primarily
used as veto
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An example: the Super-Kamiokande detector (cont'd)
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Event topological classification

Events/5000

Depending on the topology and ID and OD activities
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Particle identification at Cherenkov detectors

e-like ring u-like ring

Super-Kamiokande IV Super-Kamiokande IV

esy of SK collaboration

o Excellent particle identification (PID) obtained from the sharpness of the edge of the
Cherenkov ring

@ The multiple scattering of electrons is large, so electromagnetic showers produce
fuzzy rings. Highly relativistic muons, in contrast, travel almost straight through the
detector and produce rings with sharp edges.

Th. A. Mueller Atmospheric neutrino experiments September 7, 2022 13/29



Measured flavor ratio-of-ratios by atmospheric experiments

o Detection of the produced charged lepton in CC interactions
v+N—=I1"+X +N=I"+X = (ep,7)
@ No magnetization = no sensitivity to lepton charge = no difference between
neutrino and antineutrinos
@ 7 leptons decay immediately = no track can be seen

o Ratio-of-ratios:
(Nuflike/Neflike)data

R.je =
w/ (N —iike/ Ne—iike )Mc
Experiments Kamiokande IMB Soudan?2 Super-Kamiokande
Reipce 0.60 + 0.09 - 0.69+0.12  0.658+0.038
Ryjere 0574011 054+0.12 - 0.702 + 0.106

*Soudan2 is not a water Cherenkov detector but an iron tracking calorimeter

= ratio significantly lower than unity (more than 8¢ for SK) = v, disappearance
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How to win a Nobel prize?
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In order to test the hypothesis of
neutrino oscillation, one can vary the
pathlength travelled by neutrinos

If no oscillation :
Nj(cos ) = N;(— cos )
(I=en)

Equation is verified for electron events
but not the case for muons events

On the plots, blue boxes are MC
predictions and red dashed lines the
best-fit expectations for v, <> v,
oscillations with sin>20 = 1 and
Am® =25 x 1077 eV?

Nobel prize 2015 awarded to T. Kajita
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How to win a Nobel prize?

Number of events

Y. Ashie et al. Phys. Rev. D71, 2005
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Atmospheric neutrino experiments.

In order to test the hypothesis of
neutrino oscillation, one can vary the
pathlength travelled by neutrinos

If no oscillation :

Nj(cos0) = Nj(— cos0)
(I=e,pn)

Equation is verified for electron events
but not the case for muons events

On the plots, blue boxes are MC
predictions and red dashed lines the
best-fit expectations for v, <> v,
oscillations with sin>20 = 1 and
Am® =25 x 1077 eV?

Nobel prize 2015 awarded to T. Kajita
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Oscillation of atmospheric neutrinos in the 2v framework

@ (L/E)atm observed ratios cover 10~* < Am® < 10 eV? squared-mass region
>, L
= Amzl(E)atm <1

in most of the cases and we can neglect the Am?; contribution

@ Reactor experiments (Double Chooz, Daya Bay & RENO) and accelerator
long-baseline experiments (T2K, NOvA) have measured 013 to be small

@ Atmopheric neutrinos disappearance comes from v, <+ v, oscillations

PE™ ~ 1 — O(013, Amdy)

Am§1L>

PZT ~1-— PthTm ~ 1 — sin® 2053 sin? ( iE

with sin? 2023 ~ 1 and |Am3;| ~ 0.0021 eV?
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Oscillatory signal in atmospheric neutrinos

Y. Ashie et al. Phys. Rev. Lett. 93, 101801 (2004)

Data/Prediction (null osc.)
I = -
o N A O O = N MO

R EERE FEEE Ot - - Wl ARl FA T AR N

w
N

10 10° 10 10
L/E (km/GeV)

-

black solid histogram shows the best fit expectation for v,, <+ v, oscillations
with sin20 = 1 and Am? = 2.4 x 1073 eV? in the 2v oscillation framework

*please don't consider the red dashed and blue dotted lines which correspond to best-fit expectation for ruled
out scenarios (neutrino decay / neutrino decoherence)
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Modern atmospheric neutrinos results

Nowadays, always perform analysis in the 3v-framework

@ Assuming m; ~ ma, atmospheric v's probe Am* = Am?, ~ Am%; and all mixing
matrix elements Ua3

0 Us = —sinfize P, U,z = sinfaz cos br3, U,z = cos bz cos bi3
{please notice that U% 4 Uﬁ3 F U2, =1 for unitarity}

@ Sensitivity to ¢13 and to dcp

Take matter effects into account = sensitivity to the mass hierarchy
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What is the mass hierarchy?
two possibilities for the neutrino mass spectrum

INVERTED

NORMAL
vs [T v2 [T
I 2
R

m

v> T
v T v I
2
Am31<0

Am3 >0

NB: we know that the mass state containing most v, is the lighter of the two “solar mass” states
mf > 0 and 612 < 45° thanks to the observation of the matter effect in the Sun
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Atmospheric neutrinos and mass-hierarchy determination

@ Mass-hierarchy can be accessed through matter effects in the 3v-oscillation
framework, the longer the baseline, the higher the effects

Normal Hierarchy
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Phys. Rev. D97, 072001 (2018)

@ Mass-hierarchy determined with upward-going multi-GeV v. sample

- Normal hierarchy : enhancement of P(v, — ve)
- Inverted hierarchy : enhancement of P(7, — 7.)

@ Sensitivity enhanced if v/ separation
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SK atmospheric neutrinos results (2020)

PMNS official, SK collaboration, june 2020
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v, appearance at Super-Kamiokande

@ Results taken from Phys.Rev.D 98
(2018) 5, 052006

@ 7 leptons produced in CC v,
interactions decay quickly to
secondary particles = not possible
to directly detect 7 in SK

@ Leptonic 7 decay look quite similar
to atmospheric CC ve or v,

300 e st

o Hadronic decays are dominant and E
produce one or more pions = 100
allows separation of CC v, signal
from CC v, CC ve and NC

background o9
gaoo
@ Results excludes no-tau appearance 200} ]
at 4.60 Non tau-like
-0.5 0 0.5

Cos®
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Neutrino telescopes - Event energies and topologies

Astro : Atm. v : Atm. p
I 110 10

v Telescopes

| Earth
Nu<_tors
s s
Accelerators HE Astrophysical

Sun

Vv

MeV GeV TeV PeV
Tracks Cascades / showers
Traditional v astro channel Angular uncertainty ~ 3 — 10°

Angular uncertainty ~ 0.5° Good energy estimate

\ i
z‘ X éi'!'

VuCC (dominant) everything else (including v, CC)

v>-CC w/ 7 decaying into p (minor)
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ANTARES (Mediterranean Sea)

Twelve lines of
25 storey each

Three 10" PMTs
per storey
(885 in total)

sle

~ 10 Mton
instrumented

&
i volume
&

Peak photon
attenuation length
**~ 50 m (absorption
i dominatedy
i

© Francois Monkanet
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IceCube (South Pole)

lceCube Lab
IlceTop
81 Stations
50 m —y 324 optical sensor
~ 600 Mt
IceCube Array
86 strings including 8 DeepCore strings
5160 optical sensors
~ 15 Mt for
DeepCore
1450 m
DeepCore One 10" PMT per
8 strings-spacing optimized for lower energies B
480 Upgtic:il senfor o optlcal sensor

Peak photon
attenuation length
~ 45 m (scattering

dominated)
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v,, disappearance at IceCube

® Resuts taken from Phys.Rev.Lett. 120 (2018) 071801
o 1022 days livetime (2012-14)
@ 41599 events (full-sky)

o Best fit sin 03 = 0.517%% Am3, = 2317975 x 1073 V2
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v, disappearance at ANTARES

@ Results taken from JHEP 06, 113 (2019)
@ 2830 days livetime (2007-16)
@ 7710 events

o Best fit 03 = 45° +£12°, Am3, = (2.0+£0.3) x 1073 &V?
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v, appearance at lceCube

@ Results taken from Phys. Rev. D 99 (2019) 3, 032007

@ Search for a statistical excess of cascade-like v events which are the signature of v,

interactions

@ Absence of v, appearance excluded at 3.2¢0
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Future of atmospheric neutrino experiments

o Competition with long baseline accelerator experiments (T2K, NOvA,
Hyper-Kamiokande, DUNE) on “atmospheric parameters” (623, Am3,)

@ Atmospheric neutrinos have still a major role to play for the determination of the
023 octant and the mass hierarchy, which are required for the subsequent study of
CP violation in the leptonic sector

@ The possibility to study many oscillation channels within a single experiment will
allow to test PMNS unitarity

@ Future experiments:
- Hyper-Kamiokande — 8x SK fiducial volume
- PINGU — IceCube upgrade to lower threshold below 5 GeV
- ORCA — KM3Net detector optimised for atmospheric neutrino oscillation
studies at energies of a few GeV
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