Theory of neutrino masses and oscillations

Lecture 2

Stéphane Lavignac (IPhT Saclay)

- neutrino propagation in matter
 - constant matter density long baseline experiments
 - varying matter density solar neutrinos
- 3-flavour interpretation of experimental results
- the absolute neutrino mass scale
- the neutrino nature: neutrinoless double beta decay

Ecole de Gif 2022 : La Physique des Neutrinos LPNHE Paris, 5-9 septembre 2022

Neutrino propagation in matter

The interaction of neutrinos with matter (e-, p, n) affect their propagation \Rightarrow modified oscillation parameters + a new phenomenon: matter-induced flavour conversion in a medium with varying density

Appropriate description: Schrödinger-like equation

$$i\frac{d}{dt}\left|\nu(t)\right\rangle = H\left|\nu(t)\right\rangle$$

The Hamiltonian H contains a potential term describing the interactions of the neutrinos with the medium and can depend on t

It is convenient to write the Schrödinger equation in the flavour eigenstate basis $\{ |\nu_{\alpha}\rangle, |\nu_{\beta}\rangle, \cdots \}$, in which $|\nu(t)\rangle = \sum_{\beta} \nu_{\beta}(t) |\nu_{\beta}\rangle$:

$$i\frac{d}{dt}\nu_{\beta}(t) = \sum_{\gamma} H_{\beta\gamma}\nu_{\gamma}(t) \qquad \qquad \frac{\nu_{\beta}(t) = \langle \nu_{\beta}|\nu(t)\rangle}{H_{\beta\gamma} = \langle \nu_{\beta}|H|\nu_{\gamma}\rangle}$$

 $u_{\beta}(t)$ is the probability amplitude to find the neutrino in the state $|\nu_{\beta}\rangle$ at t if $|\nu(t=0)\rangle = |\nu_{\alpha}\rangle$, then $P(\nu_{\alpha} \to \nu_{\beta}) = |\nu_{\beta}(t)|^2$

Vacuum oscillations in the Schrödinger formalism (2-flavour case)

$$i\frac{d}{dt}\begin{pmatrix}\nu_{\alpha}(t)\\\nu_{\beta}(t)\end{pmatrix} = H_0\begin{pmatrix}\nu_{\alpha}(t)\\\nu_{\beta}(t)\end{pmatrix} \qquad H_0 = U\begin{pmatrix}E_1 & 0\\0 & E_2\end{pmatrix}U^{\dagger}$$

The Hamiltonian in vacuum H0 is diagonalized by the PMNS matrix One can check that this reproduces the standard oscillation formula (*)

It is customary to subtract a piece proportional to the unit matrix from H0 (which only affects the overall phase of the neutrino state vector $|\nu(t)\rangle$, leaving oscillations unchanged) to bring it to the form:

$$H_0 = \begin{pmatrix} -\frac{\Delta m^2}{2E} \cos 2\theta & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & 0 \end{pmatrix}$$

(*) proof: use the fact that $|\nu_{\gamma}\rangle = \sum_{i} U_{\gamma i}^{*} |\nu_{i}\rangle \Rightarrow \nu_{\gamma}(t) = \sum_{i} U_{\gamma i} \nu_{i}(t)$, where $\nu_{i}(t) \equiv \langle \nu_{i} | \nu(t) \rangle$ to show that the solution of the Schrödinger equation is $\nu_{\gamma}(t) = \sum_{i} U_{\gamma i} \nu_{i}(t)$ with $\nu_{i}(t) = e^{-iE_{i}t} \nu_{i}(0) = e^{-iE_{i}t} U_{\delta i}^{*} \nu_{\delta}(0)$, which reproduces the known oscillation formula

Neutrino Hamiltonian in matter

 $H_0 \rightarrow H_m = H_0 + V$

V induced by interactions (anti-)neutrinos / e-, p, n of the medium Relevant interactions: forward elastic scatterings ($\vec{p_{\nu}}$ unchanged)

 $\begin{array}{ll} {\rm CC-only \ for \ } \nu_e & {\rm NC-same \ for \ } \nu_{e,\mu,\tau} \Rightarrow {\rm can \ be \ subtracted \ from \ Hm} \\ V_{\rm CC} = \sqrt{2} \ G_F n_e(x) & V_{\rm NC} = - \frac{G_F}{\sqrt{2}} \ n_n(x) & \begin{array}{l} {\rm GF = Fermi} \\ {\rm constant} \end{array} \end{array}$

In the flavour eigenstate basis:

$$(H_m)_{\beta\gamma} = (H_0)_{\beta\gamma} + V_\beta \,\delta_{\beta\gamma} \qquad V_\beta = V_{\rm CC}^\beta + V_{\rm NC}^\beta$$

For anti-neutrinos, V has the opposite sign: V
ightarrow -V

For a sterile (= insensitive to weak interactions) neutrino: $V_{\beta} = 0$

Example with electron neutrinos and another flavour:

$$i\frac{d}{dt}\begin{pmatrix}\nu_{\alpha}(t)\\\nu_{\beta}(t)\end{pmatrix} = H_m\begin{pmatrix}\nu_{\alpha}(t)\\\nu_{\beta}(t)\end{pmatrix} \qquad \qquad \begin{cases} \alpha = e\\\beta = \mu, \tau, s \end{cases}$$

$$H_m = \begin{pmatrix} -\frac{\Delta m^2}{2E} \cos 2\theta + \sqrt{2} G_F n & \frac{\Delta m^2}{4E} \sin 2\theta \\ \frac{\Delta m^2}{4E} \sin 2\theta & 0 \end{pmatrix}$$

$$n = \begin{cases} n_e(x) & \text{if } \beta = \mu, \tau \\ n_e(x) - \frac{1}{2} n_n(x) & \text{if } \beta = s \end{cases}$$

For anti-neutrinos, $+\sqrt{2}G_F n \rightarrow -\sqrt{2}G_F n$

Energy levels in matter and matter eigenstates

In vacuum, the PMNS matrix U relates the flavour eigenstates to the mass eigenstates (= eigenstates of H0):

$$\begin{pmatrix} |\nu_{\alpha}\rangle \\ |\nu_{\beta}\rangle \end{pmatrix} = U^* \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \end{pmatrix} \quad \leftarrow E_1 = \sqrt{\vec{p}^2 + m_1^2} \\ \leftarrow E_2 = \sqrt{\vec{p}^2 + m_2^2}$$

<u>In matter</u>, one defines <u>matter eigenstates</u> = eigenstates of Hm

$$\begin{pmatrix} |\nu_{\alpha}\rangle \\ |\nu_{\beta}\rangle \end{pmatrix} = U_m^* \begin{pmatrix} |\nu_1^m\rangle \\ |\nu_2^m\rangle \end{pmatrix} \quad \stackrel{\leftarrow}{\leftarrow} E_2^m \\ energy levels in matter$$

Um contains the <u>mixing angle in matter</u> that diagonalizes Hm :

$$H_m = U_m \begin{pmatrix} E_1^m & 0\\ 0 & E_2^m \end{pmatrix} U_m^{\dagger} \qquad U_m = \begin{pmatrix} \cos\theta_m & \sin\theta_m\\ -\sin\theta_m & \cos\theta_m \end{pmatrix}$$

By analogy with $\nu_{\beta}(t) = \langle \nu_{\beta} | \nu(t) \rangle$, one defines $\nu_i^m(t) = \langle \nu_i^m | \nu(t) \rangle$ (amplitude of probability to find the neutrino in the ith matter eigenstate at t)

then
$$\begin{pmatrix} \nu_{\alpha}(t) \\ \nu_{\beta}(t) \end{pmatrix} = U_m \begin{pmatrix} \nu_1^m(t) \\ \nu_2^m(t) \end{pmatrix}$$

Medium with constant matter density

 $n(x) = n \Rightarrow Hm$, hence the matter eigenstates $|\nu_i^m\rangle$, energy levels E_i^m and mixing matrix Um, do not depend on t

Using $\binom{\nu_{\alpha}(t)}{\nu_{\beta}(t)} = U_m \binom{\nu_1^m(t)}{\nu_2^m(t)}$, one can rewrite the Schrödinger equation for the probability amplitudes $\nu_i^m(t)$

$$i\frac{d}{dt}\begin{pmatrix}\nu_1^m(t)\\\nu_2^m(t)\end{pmatrix} = \begin{pmatrix}E_1^m & 0\\0 & E_2^m\end{pmatrix}\begin{pmatrix}\nu_1^m(t)\\\nu_2^m(t)\end{pmatrix}$$

which is solved by $\,\nu_i^m(t)=e^{-iE_i^mt}\,\nu_i^m(0)$, giving

$$P(\nu_{\alpha} \to \nu_{\beta}) = |\nu_{\beta}(t)|^{2} = |\sum_{i} (U_{m})_{\beta i} \nu_{i}^{m}(t)|^{2} = \sin^{2} 2\theta_{m} \sin^{2} \frac{(E_{m}^{2} - E_{m}^{1})t}{2}$$

 \rightarrow oscillations in matter with constant density are governed by the same formula as in vacuum, with the replacements

$$\theta \to \theta_m, \quad \frac{\Delta m^2}{4E} \to \frac{(E_m^2 - E_m^1)}{2}$$

Oscillation parameters in matter

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta_m \sin^2 \frac{(E_m^2 - E_m^1)t}{2}$$

$$E_2^m - E_1^m = \frac{\Delta m^2}{2E} \sqrt{\left(1 - \frac{n}{n_{\rm res}}\right)^2 \cos^2 2\theta + \sin^2 2\theta}$$

$$\sin 2\theta_m = \frac{\sin 2\theta}{\sqrt{\left(1 - \frac{n}{n_{\rm res}}\right)^2 \cos^2 2\theta + \sin^2 2\theta}}$$
$$\cos 2\theta_m = \frac{\left(1 - \frac{n}{n_{\rm res}}\right) \cos 2\theta}{\sqrt{\left(1 - \frac{n}{n_{\rm res}}\right)^2 \cos^2 2\theta + \sin^2 2\theta}}$$

 $n_{\rm res} \equiv \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2} G_F E}$ for antineutrinos, $n \rightarrow -n$ (n = ne if only active neutrinos)

$$n \rightarrow -n$$

MSW resonance (Mikheev-Smirnov-Wolfenstein):

$$\sin 2\theta_m = 1 \quad \text{for } n = n_{\text{res}}$$

(irrespective of the value of the mixing angle in vacuum θ)

 $\begin{array}{ll} \mbox{Resonance condition:} & \left\{ \begin{array}{ll} \Delta m^2\cos 2\theta > 0 & \mbox{ for neutrinos} \\ \Delta m^2\cos 2\theta < 0 & \mbox{ for antineutrinos} \end{array} \right. \end{array}$

When neutrino oscillations are enhanced, antineutrino oscillations are suppressed, and vice versa

Different regimes for oscillations in matter :

 $n_{\rm res} > 0$ in ? Am nes

- low density ($n \ll n_{\rm res}$) : $\sin 2\theta_m \simeq \sin 2\theta \Rightarrow$ vacuum oscillations
- resonance ($n = n_{\rm res}$) : $\sin 2\theta_m = 1$
- high density ($n\gg n_{\rm res}$) : $\sin2\theta_m<(\ll)\sin2\theta$ \Rightarrow oscillations are suppressed by matter effects

Application: determination of the mass hierarchy in long-baseline experiments

Two mass orderings allowed by experiments:

In vacuum:
$$P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

For long baselines (> several 100 km), matter effects cannot be neglected

$$n_{\rm res} = \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2\sqrt{2}G_F E} \qquad \begin{cases} n_{\rm res} > 0 & \text{for normal hierarchy} \\ n_{\rm res} < 0 & \text{for inverted hierarchy} \end{cases}$$

If nres is close to the Earth crust density, neutrino (antineutrino) oscillations are enhanced for NH (IH), while antineutrino (neutrino) oscillations are suppressed

[may have to disentangle CP violation from matter effect]

Figure 2: Predicted ratios of $\bar{\nu}_e \to \bar{\nu}_\mu$ to $\nu_e \to \nu_\mu$ rates at a 20 GeV neutrino factory. The statistical error shown corresponds to 10²⁰ muon decays of each sign and a 50 kt detector.

• Un baseline de $L = \mathcal{O}$ (3000 km) est nécessaire/optimale

[Barger, Geer, Raja, Whisnant]

Medium of varying density (e.g. the Sun)

Now the matter eigenstates, energy levels and mixing angle depend on t

 \rightarrow "instantaneous" matter eigenstates: $|\nu^m_i(t)\rangle \ \leftarrow E^m_i(t)$

$$H_m = U_m \begin{pmatrix} E_1^m(t) & 0\\ 0 & E_2^m(t) \end{pmatrix} U_m^{\dagger} \qquad U_m = \begin{pmatrix} \cos\theta_m(t) & \sin\theta_m(t)\\ -\sin\theta_m(t) & \cos\theta_m(t) \end{pmatrix}$$

The Schrödinger equation now depends on the time variation of θ m:

$$i\frac{d}{dt}\begin{pmatrix}\nu_1^m(t)\\\nu_2^m(t)\end{pmatrix} = \begin{pmatrix}E_1^m(t) & -i\dot{\theta}_m\\i\dot{\theta}_m & E_2^m(t)\end{pmatrix}\begin{pmatrix}\nu_1^m(t)\\\nu_2^m(t)\end{pmatrix}$$

In most physical environments (including the Sun), the evolution is <u>adiabatic</u> (the neutrino state has the time to adjust to the variation of density) and one can neglect $\dot{\theta}_m$ in the Schrödinger equation. A neutrino produced in a given matter eigenstate will stay in the same matter eigenstate during its propagation, but its flavour composition will change

 \rightarrow adiabatic flavour conversion

<u>"Level crossing" in the Sun</u> (case ne (r=0) >> nres)

This is the case for high-energy solar neutrinos (E > I MeV) $n_e(r=0) \gg n_{res} \Rightarrow \sin 2\theta_m^0 \simeq 0 \text{ and } \cos 2\theta_m^0 \simeq -1$ $\Rightarrow \theta_m^0 \simeq \pi/2 \Rightarrow |\nu_e\rangle \simeq |\nu_2^m(r=0)\rangle$

 \Rightarrow a neutrino produced at the center of the Sun is a quasi pure matter eigenstate and exits the Sun in the eigenstate

$$|\nu_2^m(r = R_{\rm Sun})\rangle = |\nu_2\rangle = \sin\theta |\nu_e\rangle + \cos\theta |\nu_\beta\rangle \quad (\beta = \mu, \tau)$$

 \Rightarrow a high-energy neutrino produced at the center of the Sun is a quasi pure matter eigenstate and exits the Sun in the eigenstate

$$|\nu_2^m(r=R_{\rm Sun})\rangle = |\nu_2\rangle = \sin\theta |\nu_e\rangle + \cos\theta |\nu_\beta\rangle \quad (\beta=\mu,\tau)$$

and reaches the Earth as a $|\nu_2\rangle$, giving (using the observed value of θ_{12} for θ)

$$P_{ee} = \left| \left\langle \nu_e | \nu_2 \right\rangle \right|^2 = \sin^2 \theta \simeq 0.3$$

For low-energy solar neutrinos, the level-crossing condition is not satisfied ($n_e(r=0) \ll n_{\rm res}$) and matter effects are small

The different contours correspond to 1σ , 90%, 2σ , 99%, 3σ CL (2 dof).

Allowed ranges for the oscillation parameters (October 2021)

I. Esteban et al., NuFIT 5. I	(2021),	JHEP 09	(2020)	178
-------------------------------	---------	---------	--------	-----

		Normal Ordering (best fit)		Inverted Ordering $(\Delta \chi^2 = 7.0)$	
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
lata	$\sin^2 heta_{12}$	$0.304\substack{+0.012\\-0.012}$	$0.269 \rightarrow 0.343$	$0.304\substack{+0.013\\-0.012}$	$0.269 \rightarrow 0.343$
	$ heta_{12}/^\circ$	$33.45_{-0.75}^{+0.77}$	$31.27 \rightarrow 35.87$	$33.45_{-0.75}^{+0.78}$	$31.27 \rightarrow 35.87$
ric ($\sin^2 heta_{23}$	$0.450\substack{+0.019 \\ -0.016}$	$0.408 \rightarrow 0.603$	$0.570\substack{+0.016 \\ -0.022}$	$0.410 \rightarrow 0.613$
osphe	$ heta_{23}/^{\circ}$	$42.1^{+1.1}_{-0.9}$	$39.7 \rightarrow 50.9$	$49.0^{+0.9}_{-1.3}$	$39.8 \rightarrow 51.6$
atmo	$\sin^2 heta_{13}$	$0.02246\substack{+0.00062\\-0.00062}$	$0.02060 \rightarrow 0.02435$	$0.02241^{+0.00074}_{-0.00062}$	$0.02055 \rightarrow 0.02457$
SK a	$ heta_{13}/^\circ$	$8.62^{+0.12}_{-0.12}$	$8.25 \rightarrow 8.98$	$8.61\substack{+0.14 \\ -0.12}$	$8.24 \rightarrow 9.02$
with	$\delta_{ m CP}/^{\circ}$	230^{+36}_{-25}	$144 \rightarrow 350$	278^{+22}_{-30}	$194 \rightarrow 345$
	$\frac{\Delta m_{21}^2}{10^{-5} \ \mathrm{eV}^2}$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$	$7.42^{+0.21}_{-0.20}$	$6.82 \rightarrow 8.04$
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.510^{+0.027}_{-0.027}$	$+2.430 \rightarrow +2.593$	$-2.490^{+0.026}_{-0.028}$	$-2.574 \rightarrow -2.410$

 3σ uncertainty around 15% for θ_{12} and Δm^2_{21} , less than 10% for θ_{13} and $\Delta m^2_{3\ell}$

The best known parameters are θ_{13} and Δm^2_{32} (Δm^2_{31} in the case of normal ordering), with 3σ uncertainties below 10%, and θ_{12} and Δm^2_{21} , with 3σ uncertainties around 15%

By contrast, θ_{23} (first [$\theta_{23} < \pi/4$] or second [$\theta_{23} > \pi/4$] octant ?), the mass ordering (or mass hierarchy), and the CP-violating phase δ depend on subleading 3-flavour effects and are poorly known

 \Rightarrow not yet statistically significant

T. Schwetz, Neutrino 2022

NO, IO (w/o SK-atm)

Th. Schwetz - Neutrino 2022 — 1. 6. 2022

11

Mass ordering and CP phase

- different tendencies in
 - LBL accelerator data: T2K & NOvA better compatible for IO
 - Reactor and LBL data: better agreement of $|\Delta m_{31}^2|$ for NO
- overall preference for NO with $\Delta \chi^2 = 2.7$ (was 6.2 in 2019)
- CP phase best fit at δ=195° → CP conservation allowed at 0.6σ
- for IO: best fit close to δ=270°, CP conservation disfavoured at 3σ

Th. Schwetz - Neutrino 2022 — 1. 6. 2022

T. Schwetz, Neutrino 2022

Mass ordering and CP phase: atmospheric neutrinos

The absolute neutrino mass scale

Oscillation experiments measure only mass squared differences → information on the neutrino mass scale from beta decay or cosmology

<u>Cosmology</u>

Upper bound on sum of neutrino masses from CMB and large structure data [eV-scale SM neutrinos would be hot dark matter and affect structure formation, leading to fewer small structures than observed \Rightarrow must be a subdominant DM component]

 $\sum m_{\nu} < 0.12 \text{ eV} \quad \begin{array}{l} (95\%, Planck \text{ TT,TE,EE+lowE} \\ +\text{lensing+BAO}). \end{array} \quad \text{[Planck 2018]} \end{array}$

[avec + Lyman-a, Palanque-Delabrouille et al. obtiennent < 0.09 eV, 95% CL (JCAP04 (2020) 038)]

Kinematic measurements (beta decay)

The non-vanishing neutrino mass leads to a distortion of the Ee spectrum close to the endpoint

Best bound (KATRIN): $m_{\nu} < 0.8 \text{ eV} (95\% \text{ C.L.})$

[Nature Phys. 18 (2022) 160]

Tritium beta decay

$${}^{3}H \rightarrow {}^{3}H_{e} + e^{-} + \bar{\nu}_{e} \qquad \qquad E_{0} = m_{3H} - m_{3H_{e}}$$

The electron energy spectrum is given by:

$$\frac{dN}{dE_e} = R(E_e) \sqrt{(E_0 - E_e)^2 - m_{\nu}^2} \qquad E_e = E_0 - E_{\nu}$$

Effect of the non-vanishing neutrino mass: $E_e^{max} = E_0 \rightarrow E_0 - m_{\nu}$

 \Rightarrow distorsion of the Ee spectrum close to the endpoint

Present bound (KATRIN): $m_{\nu} < 0.8 \text{ eV} \quad (95\% \text{ C.L.})$

KATRIN will reach a final sensitivity of about 0.3 eV (95% CL) (5 σ discovery potential 0.35 eV)

In pratice, there is no electron neutrino mass, but 3 (or more) strongly mixed mass eigenstates. However the energy resolution does not allow to resolve them, and what is measured is the effective mass $m^2 - \sum m^2 |U|^2$

$$m_{\beta}^2 \equiv \sum_i m_i^2 |U_{ei}|^2$$

KATRIN will test only the degenerate case

Future experiments like Project 8 aim at the 40 meV level

In practice, there is no electron neutrino mass, but 3 (or more) strongly mixed mass eigenstates, and

$$\frac{dN}{dE_e} = R(E_e) \sum_i |U_{ei}|^2 \sqrt{(E_0 - E_e)^2 - m_i^2} \Theta(E_0 - E_e - m_i)$$

If all mi's are smaller than the energy resolution, this can be rewritten as:

$$\frac{dN}{dE_e} = R(E_e) \sqrt{(E_0 - E_e)^2 - m_\beta^2} \qquad m_\beta^2 \equiv \sum_i m_i^2 |U_{ei}|^2$$

If there is an eV-scale sterile neutrino (comparable to the energy resolution of KATRIN), its mass may be resolved:

~~~

 $E_e$ 

$$\frac{1}{R(E_e)} \frac{dN}{dE_e} = (1 - |U_{e4}|^2) \sqrt{(E_0 - E_e)^2 - m_\beta^2} + |U_{e4}|^2 \sqrt{(E_0 - E_e)^2 - m_4^2} \Theta(E_0 - E_e - m_4) + \frac{Q}{Q} - \frac{m_\nu^H}{Q} - \frac{Q}{M_\nu^H} - \frac{Q}{Q} - \frac{m_\nu^H}{Q} - \frac{Q}{M_\nu^H} - \frac{Q}{Q} - \frac{m_\nu^H}{Q} - \frac{M_\mu^H}{Q$$

## The neutrino nature: neutrinoless double beta decay

![](_page_24_Figure_1.jpeg)

Sensitive to the effective mass parameter:

$$m_{\beta\beta} \equiv \sum_{i} m_{i} U_{ei}^{2} = m_{1} c_{13}^{2} c_{12}^{2} e^{2i\alpha_{1}} + m_{2} c_{13}^{2} s_{12}^{2} e^{2i\alpha_{2}} + m_{3} s_{13}^{2}$$
  
possible cancellations in the sum (Majorana phases  $\alpha_{1}, \alpha_{2}$  in U)

![](_page_25_Figure_0.jpeg)

- need to reach 10 meV to exclude IH (lower bound on  $m_{\beta\beta}$ )
- need to reach few meV to test NH (if no mass degeneracy)
- if unlucky (m1 ~ I-I0 meV), may not observe ββ0ν even if neutrinos are Majorana (cancellation in m<sub>ββ</sub> due to α<sub>1</sub>, α<sub>2</sub>)

![](_page_26_Figure_0.jpeg)