

Machine learning for GW detection

A beginner's perspective

Introduction Results Conclusions and plans

> I.Larbi, <u>S.Viret</u> IP2I Lyon

\rightarrow **Foreword:**

 $\rightarrow\,$ We are new to both gravitational waves and machine learning, so there might be evident points in this presentation for most of you.

 \rightarrow All this is work in progress, we are open to comments, suggestions, discussion.

\rightarrow <u>Context</u>

→ The canonical GW detection method (*matched filtering*) is theoretically optimal. It's also relatively fast on current CPU based platform.

→ MF-based pipelines have been optimized for years, those algorithms contain a lot of useful informations on GW detection. This knowledge base is a very important source for any new algorithm

 \rightarrow Machine Learning (ML) methods, if properly used, can provide a simplified approach to the detection. The complexity is buried offline in the training phase, the online part just becomes a set of scalar products.

 \rightarrow Initial studies show promising results, but there are still some limitations (eg long signals)

\rightarrow What we have done?

 \rightarrow This presentation is mostly a summary of the work done in 2022 by Idriss LARBI (*master student*). I took this over since October. IL report is available here:

https://gitlab.in2p3.fr/og-ip2i/og-ip2i-au-quotidien/-/raw/master/Internships/larbi_2022.pdf?inline=false

 \rightarrow The goal of this work was to reproduce the results obtained by *Huerta and George (*)*, and to develop a simple software framework to develop and test the different training scenarii presented in *Shafer et al. (**)*.

 \rightarrow Keep it very basic for the moment: simple template, simple noise, simple training sample structure, only two categories in output (*signal or noise*). We are in learning mode...

(*) <u>https://arxiv.org/pdf/1701.00008.pdf</u> (**) <u>https://arxiv.org/pdf/2106.03741.pdf</u>

\rightarrow The tools

 \rightarrow All the results presented here were obtained with the Python code available here:

https://github.com/sviret/DeepWave/tree/FFTW/DGWS

 \rightarrow For the ML tools we use the <u>d2l</u> environment (*), which is pretty complete and heavily documented. We also use PyCBC to generate some signals.

 \rightarrow I wrote a small tutorial page to install and use DGWS package:

https://sviret.web.cern.ch/sviret/Welcome.php?n=Virgo.ML

 \rightarrow This is all preliminary (*cf slide 1...*), but relatively simple to use. You should have everything to reproduce the results presented here with few commands.

(*) <u>http://d2l.ai/</u>

→ **Producing signals (***and noise***)**

→ Simple macros to produce noise samples (*with flat or colored PSD*), and templates (*simple GEM model or SEOBNRv4 via pyCBC, whitened or not, sampling frequency,...*)

→ Easy to produce a training sample with any given config

\rightarrow **Playing with SNRs**

 \rightarrow As both noise and template are whitened, getting signal at a given SNR is fairly straightforward. For the training we will use different SNRs, starting from the same initial sample at SNR=1. The framework is taking care of that so it's transparent for the user.

\rightarrow The network

 \rightarrow Start with the simple convolutional neural network (*CNN*) from <u>*Huerta & George*</u>:

- 1-dimensional input (*time serie*)
- 3 convolution layers
- 2 output categories

 \rightarrow We use a lower sampling frequency and a lower mass range than in the initial study (*lower time, we're just using CPU for the moment*).

 \rightarrow Here also it's pretty easy to modify the network, ML libraries come with a lot of practical tools.

\rightarrow Importance of the training parameters

 $\rightarrow\,$ Network training strategy is fundamental, this is where you need to understand what you are trying to do.

- \rightarrow They are many knobs to tune:
 - SNRs
 - Learning rate
 - Batch size
 - Template bank
 - Number of training steps
 - ...

 \rightarrow Of course most of those parameters are not independent, so finding the right combination can be a pain if you don't make some initial assumptions. The work by <u>Shafer et al.</u> is a very good illustration of the problem

 $\rightarrow\,$ Deep understanding of the classical algorithms could be very useful here, in particular to define the training sample.

\rightarrow SNR influence (*)

 \rightarrow If you train the network with a fixed SNR, very low values will not be optimal as convergence will become too complicated. Here SNR10 gives better results than SNR8

 $\rightarrow\,$ But if SNR is too large you loose efficiency on lower SNRs

 \rightarrow The solution is to train the CNN with decreasing SNR values, from high to low.

(*) <u>Note</u>: noise used for these plots was lower than expected due to a bug in generation. Plateau is a bit too optimistic here

\rightarrow Learning rate influence (*)

(*) <u>Note</u>: noise used for these plots was lower than expected due to a bug in generation. Plateau is a bit too optimistic here

→ Results with an 'optimal' training (and correct noise):

 \rightarrow Result obtained with 400 epochs, at different SNR ranges.

 \rightarrow Slightly worse than Huerta paper (*they reach plateau at 8*). But we see from the learning plot that there is possibly still some margin.

 \rightarrow This is sufficient to validate our framework.

\rightarrow <u>And now?</u>

 \rightarrow Until now we have more or less reinvented the wheel. But we have understood things, and developed a lightweight testing framework. We now have a toy to play with...

 \rightarrow Among future tasks are:

- Go for GPU acceleration
- Pursue the work on training
- Test other more complex networks
- Work on longer signals (possibly with a 2 CNNs approach)
- Increase the number of output categories
- As said earlier we also are open to suggestions

 \rightarrow We also want to use this framework as a comparison platform for hardware-based approach. Indeed FPGA-based approach is not very interesting for the detection itself, **but it might help to drastically reduce the training time** (*clear limiting factor here*). We want to investigate that.