
Machine learning for GW detection
A beginner’s perspective

15th November 2022

Introduction
Results

Conclusions and plans

I.Larbi, S.Viret
IP2I Lyon

2 S. Viret

Introduction
Results
Conclusions and plans

→ Foreword:

→ We are new to both gravitational waves and machine learning, so there might be evident
points in this presentation for most of you.

→ All this is work in progress, we are open to comments, suggestions, discussion.

3 S. Viret

Introduction
Results
Conclusions and plans

→ Context

→ The canonical GW detection method (matched filtering) is theoretically optimal. It’s also relatively fast on
current CPU based platform.

→ MF-based pipelines have been optimized for years, those algorithms contain a lot of useful informations
on GW detection. This knowledge base is a very important source for any new algorithm

→ Machine Learning (ML) methods, if properly used, can provide a simplified approach to the detection. The
complexity is buried offline in the training phase, the online part just becomes a set of scalar products.

→ Initial studies show promising results, but there are still some limitations (eg long signals)

4 S. Viret

Introduction
Results
Conclusions and plans

→ What we have done?

→ This presentation is mostly a summary of the work done in 2022 by Idriss LARBI (master student). I took
this over since October. IL report is available here:

https://gitlab.in2p3.fr/og-ip2i/og-ip2i-au-quotidien/-/raw/master/Internships/larbi_2022.pdf?inline=false

→ The goal of this work was to reproduce the results obtained by Huerta and George (*), and to develop a
simple software framework to develop and test the different training scenarii presented in Shafer et al. (**).

→ Keep it very basic for the moment: simple template, simple noise, simple training sample structure, only
two categories in output (signal or noise). We are in learning mode…

(*) https://arxiv.org/pdf/1701.00008.pdf
(**) https://arxiv.org/pdf/2106.03741.pdf

https://gitlab.in2p3.fr/og-ip2i/og-ip2i-au-quotidien/-/raw/master/Internships/larbi_2022.pdf?inline=false
https://arxiv.org/pdf/1701.00008.pdf
https://arxiv.org/pdf/2106.03741.pdf

5 S. Viret

Introduction
Results
Conclusions and plans

→ The tools

→ All the results presented here were obtained with the Python code available here:

https://github.com/sviret/DeepWave/tree/FFTW/DGWS

→ For the ML tools we use the d2l environment (*), which is pretty complete and heavily documented. We
also use PyCBC to generate some signals.

→ I wrote a small tutorial page to install and use DGWS package:

https://sviret.web.cern.ch/sviret/Welcome.php?n=Virgo.ML

→ This is all preliminary (cf slide 1…), but relatively simple to use. You should have everything to reproduce
the results presented here with few commands.

(*) http://d2l.ai/

https://github.com/sviret/DeepWave/tree/FFTW/DGWS
http://d2l.ai/
https://sviret.web.cern.ch/sviret/Welcome.php?n=Virgo.ML
http://d2l.ai/

6 S. Viret

Introduction
Results
Conclusions and plans

→ Producing signals (and noise)

A noise realisation with colored PSD

→ Simple macros to produce noise samples (with flat or colored PSD), and templates (simple GEM model or
SEOBNRv4 via pyCBC, whitened or not, sampling frequency,…)

A whitened template

→ Easy to produce a training sample with any given config

7 S. Viret

Introduction
Results
Conclusions and plans

Signal and noise at SNR=10

→ As both noise and template are whitened, getting signal at a given SNR is fairly straightforward. For the
training we will use different SNRs, starting from the same initial sample at SNR=1. The framework is taking
care of that so it’s transparent for the user.

→ Playing with SNRs

8 S. Viret

Introduction
Results
Conclusions and plans

→ The network

→ Start with the simple convolutional neural
network (CNN) from Huerta & George:

• 1-dimensional input (time serie)
• 3 convolution layers
• 2 output categories

→ We use a lower sampling frequency and a lower
mass range than in the initial study (lower time,
we’re just using CPU for the moment).

The tested CNN

→ Here also it’s pretty easy to modify the
network, ML libraries come with a lot of practical
tools.

https://arxiv.org/pdf/1701.00008.pdf

9 S. Viret

Introduction
Results
Conclusions and plans

→ Importance of the training parameters

→ Network training strategy is fundamental, this is where you need to understand what you
are trying to do.

→ They are many knobs to tune:

• SNRs
• Learning rate
• Batch size
• Template bank
• Number of training steps
• …

→ Of course most of those parameters are not independent, so finding the right combination can be a pain
if you don’t make some initial assumptions. The work by Shafer et al. is a very good illustration of the
problem

→ Deep understanding of the classical algorithms could be very useful here, in particular to define
the training sample.

https://arxiv.org/abs/2106.03741

10 S. Viret

Introduction
Results
Conclusions and plans

→ SNR influence (*)

ROC curves for different training SNRs
Error rate fixed at 0.5%

→ If you train the network with a fixed SNR,
very low values will not be optimal as
convergence will become too complicated.
Here SNR10 gives better results than SNR8

→ But if SNR is too large you loose efficiency
on lower SNRs

→ The solution is to train the CNN with
decreasing SNR values, from high to low.

(*) Note: noise used for these plots was lower than expected due to a bug in generation. Plateau is a bit too optimistic here

11 S. Viret

Introduction
Results
Conclusions and plans

→ Learning rate influence (*)

ROC curves for different learning rates

→ For the learning rate you also have to find
a tradeoff

→ And so on for the other parameters, this is
vast…

(*) Note: noise used for these plots was lower than expected due to a bug in generation. Plateau is a bit too optimistic here

→ IL just had time to explore few parameters
during his internship, there is still a lot of work
ahead…

12 S. Viret

Introduction
Results
Conclusions and plans

→ Results with an ‘optimal’ training (and correct noise):

→ Result obtained with 400 epochs, at different SNR ranges.

‘Optimized’ ROC curve Training evolution

→ Slightly worse than Huerta paper (they reach plateau at 8). But we see from the learning plot that there is
possibly still some margin.

→ This is sufficient to validate our framework.

13 S. Viret

Introduction
Results
Conclusions and plans

→ And now?

→ Among future tasks are:

• Go for GPU acceleration
• Pursue the work on training
• Test other more complex networks
• Work on longer signals (possibly with a 2 CNNs approach)
• Increase the number of output categories
• As said earlier we also are open to suggestions

→ We also want to use this framework as a comparison platform for hardware-based approach. Indeed
FPGA-based approach is not very interesting for the detection itself, but it might help to drastically
reduce the training time (clear limiting factor here). We want to investigate that.

→ Until now we have more or less reinvented the wheel. But we have understood things, and developed a
lightweight testing framework. We now have a toy to play with...

