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Introduction

o(6]d) = p(d|0)p(6)

* Bayesian parameter estimation: p(d)

* Performance of likelihood function is crucial (millions of evals) - performance of PE
algorithm is also crucial, time to converge can be unreasonable

e Standard likelihood for stationary Gaussian noise: In £ = —l(h —dlh —d)
b — a(f)b*(f) _ a(f)b* (f1) A
( yb)_4Re/df 07 (alb) = 4ReAfZ SO fi = iAf

* Ingredients: fast waveforms, fast likelihoods, fast PE algorithms

* Accelerating waveforms: Reduced Order Models (ROMs), Surrogates — crucial for NR
and EOB

* Acceleration of likelihoods go beyond simply using a fast waveform — important for
data interface



Outline

* How long are GWV signals ! Ground-based detectors and
LISA

* Accelerating the likelihood: multibanding, heterodyning,
Reduced Order Quadratures

* Accelerating PE: burn-in vs sampling, marginalization/
extremization, fast/slow parameters

* Dealing with degeneracies: example of MBHBs for LISA
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How long are GWV signals ?

1= BBH waveform from 20Hz
). M = 65Moy, fun = 20 Hz Time-frequency relation
With M, = GM/C3 the
< .
total mass in seconds
(Mo =5 x10"%s):
_2-
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51 M =28Mg, fmin =20 Hz at leading order, for a
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How long are signals for ground-based detectors ?

~ 10—23_
lN
am
Steep dependency of P
signal duration on M and =
ine f & 10724
starting frequency -
'S
o
&P
High sampling rate is s 2| 2| Cosmic Finstein
overkill for the inspiral... 107254 7] ] = E?fPIIOlrgrl = Telescope 1
10 100 1000
Frequency / Hz




How long are LISA signals ?

LISA signals

e MBHBs: very loud, merger-
dominated (mostly short)
e SBHBs: early inspiral, some chirping
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How long are LISA signals ? MBHBs

* How long before merger can we detect the Astrophysical models [Barausse 2012]:
signal ? * Heavy seeds - delay
e SNR=10 to claim detection * Heavy seeds - no delay
* Poplll seeds - delay

q =5, SNRinresholda = 10 A
20.0 : ; : 10
1754 A
10’
504 B W\ S S— .
: : : gi
102 =
125_ .......... ...................... ....................... ...................... E
2 10.01 10! é)
I
7'5_ ............ ....................... ........ \ ...................... ........ . Dzi
5‘0_ ............... " .............. +
g 5 g g 10_1 .
2.5 z
°
0.0 ) ®
102 103 10* 10° 109 107 108 10 —

MBHB detected signals:
Bulk shorter than ~10days

Tail extending to ~3months
\. J




How long are LISA signals ? Other signals

SBHB signals

* Can last for years in the LISA band and chirp to exit the band at high
frequencies

* Data with Nyquist sampling 0.2Hz for
| Oyrs: N=6.3e6

GB signals

e |ast for the whole mission

e Quasi mono-chromatic, very compact in Fourier domain
* Millions superposed, ~20000 resolvable !
EMRI signals

e Can last for months

* Waveform generation and representation very challenging,
complex signal with many harmonics



Outline

* How long are GWV signals ! Ground-based detectors and
LISA

¢ Accelerating the likelihood: multibanding,
heterodyning, Reduced Order Quadratures

* Accelerating PE: burn-in vs sampling, marginalization/
extremization, fast/slow parameters

* Dealing with degeneracies: example of MBHBs for LISA
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Accelerating likelihoods: ‘multibanding’

200 ' ! ! ! !
Beyond Nyquist sampling - . . . .
150 fiod T . T P .
N:fmaX/Af:fmaX*AT 2 : : : : :
Max frequency set by E ol S o B |
merger, duration 2 ' ' ' ' '
dominated by inspiral £

Ul
o
I

Nyquist sampling is far

from optimal for chirping 0= = e —
S|gnals Gravitational frequency [Hz] [Vinciguerra+ 201 7]
107 \I I I I I I
Solution: separate data in : — /.3 [sec Eq. (6)]

—  ~ful [seeEq. ®)] |
* * Data, Standard
Data, MB-Interpolation | 1

signal-adapted bands 10° ¢

Interpolation acceleration

If on each band, phase is linearly
interpolated, replace exp. with mult.

Number of used frequencies

ei)\(j—i—l)Af _ pINAS GIAAS

. . . Lowest frequency cut off f,,;, [Hz] [Vinciguerra+ 2017]
Generalizes to higher-order polynomials
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Accelerating likelihoods: quasi-monochromatic heterodyning

GB signals in LISA: quasi-monochromatic
(I)=(I)0+27T (fot—l—%f()t2—|—...)

foT
K1
fo

Sidebands: created by chirp and
modulation of the LISA response

* |dea: factor out the fast-varying part,

work with the slow-varying part
[Conish-Littenberg 2007]

s(t) = 5(t) exp|2i7 fot]

* FFT of the slow part, with a very

reduced Nyquist frequency
(bandwidth: from 32 to 512)

* Go back to original signal with a simple

shift in frequency

LISA GB signal

/ (
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Accelerating likelihoods: heterodyning

Overview [Cornish 2010, Cornish 2021]
e Structure of the likelihood [Zackay+ 2018] (relative binning)
_ LYo an— . a(f)o*(f)
L= (h—dh—d) (alb)= /df o

Usage in practice
* Small reduced grid (N~100)

h = Ae'® smooth amp/phase d numerical data

* Introduce a reference waveform #(f) e Different interpolation methods (linear,
((f) = h(f)/h(f) now slowly variable polynomial)
in the vicinity of reference parameters * ReCIUi"eS reference waveform (ﬁ rst guess

for signal parameters) — can be updated
* Separate integrand in slowly and rapidly  on the way

variable parts e Distinguish burn-in from actual sampling,
_ - :
(h|d) N/ < (hlh) ~ /df_* e the latter happens close to the true signal
0.08 T T . T T T T T
([ ..
Interpolate and precompute o8 | | | poposed
¢ interpolated on a coarse, reduced grid b T |
(hld) ~ Z/ df S X (a; + b; f) 5 002 |
2 _
fz—i—l
h‘h Z/ df— X az + b; f+czf ) -0.02 F 7N .
004 | e T .
* Evaluate 005 e
0 50 100 150 200 250 300 350 400
h on coarse grid, then sum weights and coeffs InL [Cornish 2021]
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Accelerating likelihoods: heterodyning example for MBHB

, T ") (2,2)
Decomposing the likelihood: Vi3
1
ln£:—§(3—d|3—d) |
1 1 10 f (Hz) 10-2 10-!
— —5(5 — So|s — s0) + (s — sold — s0) — 5(80 —d|sg —d)

0.0

—0.2

Residuals from reference waveform:

0.5

0 _ Y

Stm — ng — Tﬁmez tm 0.0
Implementation: | | |
10-* £ (Hz) 10-2 10-!

0.2

(s — sols — so) Z Z TemT ! |ez(¢0’ /=P m)) "

fm 0/'m/’ o

50 —0.1

(5 — sold = 50) = > (reme™" " (d = 50))

Im

0.2

* Fix a sparse frequency grid (~128)
* Linear interpolation of the

residuals, mode-by-mode o 1
* Precompute 0-th and Ist

polynomial inner products against

phase and data terms, with a fine P

resolution
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Accelerating likelihoods: ROQs

Linear ROM for GW signal

Building a reduced basis and empirical interpolant
directly for r.,h.and products hahp(A=+,x) :

RO1(F) =D Bi(HRBI(f7°%)  halblhsl6)(f) = > Ce(H)halb]hs(0)(
j=0 k=0
P,q size of the reduced basis (linear and quadratic)

+ efficient representation for likelihood
- larger basis for longer signals, challenging to build

Likelihood evaluation

* Precompute all inner products
(Bjld) (Ckl1)

* Evaluate waveform model on interpolant nodes
Aj = RIOV(F7°%) g = hal0)hp[0](f2°°)

* Use linear/quad structure to compute likelihood
mE:—%M—ﬂh—@

q

p
Inl = Z i (Bj|d) + Z,uk(CkH) + const
5=0 k=0

15
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Outline

* How long are GWV signals ! Ground-based detectors and
LISA

* Accelerating the likelihood: multibanding, heterodyning,
Reduced Order Quadratures

¢ Accelerating PE: burn-in vs sampling,
marginalization/extremization, fast/slow
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Accelerating PE: burn-in vs sampling

Burn-in (here struggling to find the signal !)

—

=103 1

10" 4

0 2000 1000 6000 8000 10000 12000 14000
Steps

Scale of likelihood with completely wrong signal: In Ly,,q ~ —SNR?

Sampling (not moving much in likelihood)

—InL

0 500 1000 1500 2000 2500 3000 3500
Steps
* Simulating realistic PE: start from prior Techniques for burn-in
* Prospective parameter estimation, only (search) or sampling can
interested in final result: cheat with differ !
initialization

17



Accelerating PE: marginalization, optimization

Separate parameters to ‘interesting’ parameters (intrinsic)

reduce dimensionality: A parameters to eliminate (extrinsic)
Marginalization p(0|d) = /d)\ p(0, \|d)

review: |[Talbot-Thrane 2018]

* Approximate marginalization on time: IFFT of integrand mimics time shifts
* Phase marginalization for 22-only signals (likelihood becomes modified Bessel function)

* Distance marginalization

Optimization F = max) In L(0, \)
Useful at search stage, for faster * F-stat analytical over distance, inclination, phase,
burn-in polarization

* F-stat to build a proposal e LISA GB in low-frequency approximation: +sky

* Directly search ‘sampling’ F-stat

. ) : TS
as a pseudo-likelihood LISA MBHB low-f and short signal approximation: +sky

18



Accelerating PE: fast and slow parameters

Separate parameters for
computational efficiency:

6 ‘costly’ parameters (intrinsic)
A ‘cheap’ parameters (extrinsic)

Intrinsic parameters: requires to solve GR (analytical models, numerical relativity)

Extrinsic parameters: geometry and signal propagation, simple and completely universal

Gibbs sampling

Successive sampling steps by Oiv1 ~ p(O|\;)
blocks Ait1 ~ p(A0it1)

+ cache intrinsic waveform (waveform modes) and
sample efficiently in cheap extrinsic parameters

- resolving correlations might be costly

10—

Likelihood pre-interpolation

0.5}

Pre-interpolate intrinsic likelihood (e.g. .

2 o_o} i........:.‘," :U: :u:tg.:-
Gaussian Process Regression)

—0.5} H

e LIGO/Virgo: RIFT [Lange+ 2017] g B

1.0

Xeff

e LISA GB: [StrUb'l' 2022] 1a [Lange+ 2017] M(M,)



Accelerating PE: dealing with degeneracies

Parallel tempering

* Introduce parallel chains with
temperatures, posterior: p(6)”

Bi = 1/7T;
* Propose swaps with acceptance:

Bj—Bi

. P(%‘)) ’
Pswap — 111111 17 (
g p(6;)

Tempered likelihood

10 -

| T ey o o> o AeEs—————————— G S GRS DY D S GPCEPEEP PR § S SP TR CERE

— T =1
T =10
— T =100

- i

0.0

0.2 0.4 0.6 0.8 1.0
Monte Carlo Step [Earlab 2005]

* Crucial for robustness, avoids being stuck in a local
maximum and ensures exploration of the parameter space

Tailored proposals

* In presence of known degeneracies,
include jumps in proposal

* Very efficient for very disconnected
multimodal posteriors

LISA MBHB sky degeneracy pattern
75"

6GO°

Reflected
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Outline

* How long are GWV signals ! Ground-based detectors and
LISA

* Accelerating the likelihood: multibanding, heterodyning,
Reduced Order Quadratures

* Accelerating PE: burn-in vs sampling, marginalization/
extremization, fast/slow parameters

e Dealing with degeneracies: example of MBHBs
for LISA
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Dealing with degeneracies: MBHB example

Toy problem, completely degenerate extrinsic 22 likelihood without motion and high-f effects

A (rad) ¢ (rad) ¢ (rad)

A (rad)

Uy, (rad)

. . +25.79
D (Gpe) = 124397355
1" )
" )
" )
1" ]
) " |}
) " ]
] ]
] ]
] [}
1 " |}
1 11} |}
T 1 III 1

¢ (rad) = 1.00%5731

Blue: no param map

Red: parameter map, iterations/10

+0.80
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Dealing with degeneracies: parameter map

* Use variables as close as possible to what we really
observe (essentially pattern functions), to make the
| posterior look Gaussian
| * Sampling can be done in any set of parameters, with
AR Jacobian of the transformation analytic here
S Response variables: 2 complex pattern
functions, amplitude and phase
/\\f?il | A+ A_ (D+ @_
TR + 2 sky angles X 5
\’\ ‘:z ".-
D_ o Dl
Analytical transformation,
A no extra cost
/"\ ‘ ‘ ‘ ‘ 1l . ' . :. _1_,_:J— '
| g L]
7 AP EFT S FE NP FFSTE S0 S SESES
A+ B QA:\ N} / / é—i_/ / @_ >\ 6



MBHB example: |) F-statistic search on small data segments

250

500

750 1000 1250 1500 1750
Steps

Select short data segment

F-statistic: approximate response, optimize
analytically over extrinsic parameters
Sampling easier for a lower dimensionality
Get a first guess of intrinsic parameters +
time




MBHB example: Il) initial PE with low frequencies
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LISA data - band-passing, whitening

N
=,
2
o
=
g
—
=
©
—
"
o0
8

200
Time [days]

* Band-passing: select frequencies below 2mHz
* Whitening: work with signal/noise, so that all frequencies/times contribute equally
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LISA data - band-passed, whitened in time domain

x 10~

Instr. noise

Verification binaries
Full Galaxy
— NIBHBs

|~ AN~ o AN ANAA
AT A%

X-TDI strain

11
—921
—31
0 50 100 150 200 230 300 350
Time [days]|
Whitened, band-passed data
20 1
<
| | 0 --———-—W——*W
-
-
—20 1
0.0 0.5 1.0 15 2.0 25 3.0

t (S) %107
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LISA data - band-passed, whitened in time domain

TDI A

Whitened, band-passed data

20

—20 1

1.10

1.11

1.12 1.13 1.14

1.15

4.785 4.790 4.795 1800 1805
x10°
5.0 1 A
’! |
\| "l
2.5 /) Hd-ny
.“‘/'\, [l I\
- / il [ '
0.0
I'I |'|. ]
251 W\ ‘J
||| ||\f':'" 'I'\.."'
5.0 1 v
8.742 8.744 8.746 8.748 8.750

1.16
x 107



Noise properties

[ We are making probabilistic statements... ]

Noise PSD Assuming properties of the random noise !

* Noise autocorrelation function: K(1) = (nt)n(t+ 1))
(stationarity: depends only on 7))

* Noise PSD formal definition: Sp(f) =2 / dTe%TfTK(T)
e Stationarity:independance in FD (7 (f)n*(f')) = %Sn(f)d(f —

1
 Gaussianity: noise in freq. bins is Gaussian ~ 7(f) ~ N (0, ——S5,.(f))

n
2Af

10-16 Example PSD

10717
< o-18) y Less-than ideal assumptions for LISA !
= A Non-stationarity, glitches...
& 10!

10—

102! — : - — ;

10-? 101 10~ 10-2 10~ 10"
f (Hz)
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Likelihood and Bayesian analysis

Likelihood
* Likelihood: L[ = p(datalsignal params)
1
e PDF of the noise: collection of independent Inp(n = n;) = const — — Z Af 72|
Gaussian noise variables in each bin Sn(f)
d 1
:——4/ f L 2:—5(”’”>

S

* Likelihood is the probability that the noise makes
up for the difference between observed data and
theoretical signal: d=h(0)+n Inp(d|f) =Inp(n=d— h(0)) (d h(6)|d — h(0))

Bayesian formalism

7 I %

e Matched-filtering overlap: (hq|hg) = 4Refdf i g)h2 /) h GW signal
n(f) 0 parameters
* For Gaussian, stationary noise, for independent d data stream

channels: . 0o signal params.
In £(d|f) = — —(h(#) — d|h(8) — d) N noise real.
(’ Chanz;els 2 o) S, noise PSD
* Bayes theorem defines the posterior:  p(f|d) = l 290( ) po(0) prior

p(d) p(d) evidence

32



Parameter estimation tools

Sighal-to-noise (SNR) Fisher matrix analysis
* Quadratic expansion of log-likelihood around true
Measures loudness of signal: signal, approx. likelihood as a Gaussian

h(0) = h(0y) + Ab;0;h + ...

1
In L = —§A(9@FZJA(9] + O(AHS)
Fi; = (0;h|0;h)

SNR?* = (h|h) :4/g—f|h|2

Simple detection statistics: SNR>8-10
(true detection statistics LIGO/Virgo * Matrix inversion to get to the covariance of the
more complicated) Gaussian (7 — 1

* Valid at high SNR, and misses degeneracies

Bayesian sampling tools Levels of approximation
e MCMC methods, nested sampling * Fisher:for high SNR limit (depends
* MCMC proposals: ensemble samplers on signal !)
(emcee), differential evolution, ... * Set noise realization to 0
* Parallel tempering: explore full * Initialize MCMC from Fisher
parameter space * Full run with initialization from priors
* Informed proposals to deal with * Full run with noise
degeneracies e Superposition of sources, unknown

noise, noise artifacts...
33



GW signals seen by LISA - the basics

I |

Inspiral

IMR Signal

10—21)

| — Numerical relativity

B Reconstructed (template)
1 1

Merger Ring-

|

LISA: different BHB signals

MBHBs: very loud, merger-
dominated (mostly short)

SBHBs: early inspiral, some chirping
during LISA obs. (multiband ?)

GBs: quasi-monochromatic,
superposed

e EMRISs: long-lived, many harmonics
e Stochastic backgrounds

TDEs !

34

Characteristic Strain

10716

\ T T T T

= v Galactic Background

I \ day homi()" - I MBHBs at z =3
1 0‘1 / - S 9 % Verification Binaries

- . = EMRI Harmonics

TN month =

_ AN hour | = LIGO-type BHBs
107181 \ L7 | — GW150914

g \ year Gal. Bin. (SNR > 7)

1T

i \ 10° M.,
10" 3 \

- \

A

I A
1020} N

E AN

_ \

Observatory \
21 I Characteristic Strain N

10 - | = = Total \ E

i M| n M| L L . | L | |||:

107 10 102 102 107" 10°

Phases of the signal:

¢ Inspiral: covered by post-
Newtonian (PN) perturbative series

e Merger: covered only by numerical
relativity (NR)

¢ Ringdown: NR, superposition of
Quasi-Normal Modes (QNM)

Frequency (Hz)



Contrasting LIGO/Virgo and LISA responses: LISA

LISA-frame

B-f : ' .
SSB-frame: global view of the orbits Low-f approximation: two LIGO-type

detectors in motion [Cutler [997]

| /4

1 AU (150 million km)
Sun
Y A
[ 4 . ]
®

( ' T \\,} High-f: three channels
' : with complicated

frequency-dependence

4oL GW Sky localisation from the
Short-lived modulations induced by the orbits

signals: LISA for long-lived signals
frame

Sky localization can also come from
high-f effects.

Degeneracies - multimodality in the
sky possible !
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Massive black holes: signals and challenges

'MBHB merger in time-domain

1

* Very loud sources, SNRs of
several thousands !

* Detection of merger easy, but
detection as early as possible ?

Y-tdi (frac. freq.)

e Advance localization for

multimessenger Obser’vations ? 1.3840 1.3845 1.3850 1.3855 1.3860 1.3865 1.3870
’ Time (sec) x10°
i FD signal with harmonics M =2-10° M,
* Signals can be short (< |day) (017 & ® 4
and degenerate — All
— (2,
10—18 \ o 27
* Waveform model systematics | o
. . 10194 :
for such loud signals ? Biases, 8 ; 5,
iy ] 018
residuals for other sources ! 107204
: : 10-214
* Subdominant features in the
signal are important 10-22 MK

NiE
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Galactic binaries: signals and challenges

Superposed signal

* Mostly WD-WD, some other 1057
compact objects .
T 10739 4 i ;

* Full galaxy: ~20 million systems! P
:E 10-40 Al
=

e About ~20000 individually O ot |
N

resolvable = \\—/
107424 . i
* Form a (non-stationary) 107
background - L L -
104 103 1072
Freq. (Hz)

* Verification binaries
Individual signal

* Quasi-monochromatic GW .‘“\.ﬂ;,l|\{‘w.,‘.
. | l‘l‘ I
emitters aa

[o—
po—
—
|
p—

* Modulation by LISA motion ' )

(sidebands in Fourier-domain) 107

TDI X amplitude

e Superposition of signals in

Fourier-domain 0.000 0.001 0.002 0.003 0.004
37 f (mHz) +1.007x10"




Extreme mass ratio inspirals, stellar-mass black holes

20

i [Berry&al 2019]

EMRIs
* Long-lived, complex signals, large number of wave cycles
(10* — 10°) %
e Strong precession and eccentricity features, orbitsinthe /. \Ky/

relativistic regime around Kerr

* Exquisite determination of some parameters — also
means that the signals are hard to find !

10 15 20 25
/g

e Theoretical work on waveform models needed
Simple amplitude/phase, Complex high-f response

Amplitude %107 Phase

Stellar-mass BHs
* Quiet signals: a few detections in the LISA band A i
* Inspiral regime far from merger, very large number e e
of CYCIGS (105 — 106) 1500 Orbital deloy phase B (rad) TranSfer TZQ
. . . 1000 0'5'
* Challenge of detection: template banks impossible n
0.0 \/\’\
A \]vv
e Multiband analysis, archival searches ? VN 0'5P— I
38 10! —H0 10— |

f (Hz) Hz)



LISA data - LDC-2 Sangria
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e MBHBs: chirping signals, emerging from low-f noise
e GBs: quasi-monochromatic, horizontal lines
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LISA data - LDC-2 Sangria Time-Domain

~19
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R VAVAYS —— Instr. noise
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‘2. I |
1 J

X-TDI strain

—17 | | | ‘
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— 9
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0 50 100 150 200 250 300 350
Time [days]

e MBHBs: loudest ones clearly visible by eye above the noise
e GBs: superposed signals, annual modulation due to the LISA motion
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LISA data - LDC-2 Sangria Frequency-Domain

— Full Galaxy
Sl — Verification binaries
— NIBHBs
— [nstr noise
107
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10—41
1077 10~ 10-3 102 | 10~

Frequency [Hz]

e MBHBs: loudest ones visible in the spectrum, subdominant
e GBs:signals local in frequency, both individually resolvable and building up a background

41



LISA Fourier-domain response

Response

Laser frequency shift, spacecrafts
s to r through link I: y = Av/v

1 1 1 AU (150 million km)
Ysir = 3 A ng - h ts) — h tr)) - my Sun
ST (hles) = he) )

" Transfer function for modulated and delayed signaI\

FT[F ()t +d(8)] = T(f)h(f)

Fourier-domain for chirping sighals (separation of timescales):

Talr = mszSinC TfL(1—Fk-n)|explinf (L+k-(pr+ps)))n-P-ni(ty)

Time and frequency-dependency
Time: motion of LISA on its orbit
Frequency: departure from long-wavelength

+ Time-delay interferometry (TDI)
linear combinations of Ysir with more delays
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LISA mission - 2034
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Characteristic Strain

LISA sources

LISA sources MBHBs SNR
10D 20 e
: Monih Galactic Background |1 R 1220
I I\ day hour. ... l MBHBs at z =3 181
10_17 3 \ it % Verification Binaries |4 1200
; y(}xr\ siimm = EMRI Harmonics
_ Wi i~ | = LIGO-type BHBs ] 161 1180
1018k \ 1070 — Gw150914 |
\ year Gal. Bin. (SNR > 7) 14 - 1160
10"19;' \\ 121 1140
5 o
i J ¥
i . 10 1205
1070 {1008
: Observatory / 3r
21 I Characteristic Strain / 180
10 ¢ | = = Total E 6t
107 10 107 107 10”7 10 4t 140
Frequency (Hz)
Terminology: 2 120
* Massive black holes binaries (MBHBs) =
e Stellar-mass black hole binaries (SBHBs): ' '@ 10 10 M1(3W )10 100 0o
©)
masses observable by gsround-based (source-frame mass)
detectors [Sesana 2016]
* Galactic Binaries (GBs): mostly WD-WD
* Extreme Mass Ratio Inspirals (EMRIs)
* Sochastic backgrounds (GBs, cosmo.)
e TDEs!
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Contrasting LIGO/Virgo and LISA responses: LIGO/Virgo

GWTC-1 sky localisation

Pattern functions

Simple multiplicative response

8:F+h_|__|_F><h><

Angular dependence:

1
F, = 5 (1 + cos? 6’) cos (2¢) ,

F,, = cosfsin (2¢)

Time-of-arrival triangulation

* Two detectors: ~ring on the sky
* Better localization for 3 or more
detectors (even low SNR!)
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LISA instrument response

One-arm frequency observables

From spacecraft s to spacecraft r
through links: y = Av/v

1 1
Ysir = 5 ~ n - (h(tS) - h(tr)) " Ty
2 1—k- n
~ ~ Equal-arm Michelson Unequal-arm Michelson
ts:t_L_k'p87 tr:t—k'pr @ @ @ @
A A ;:’t ,-“ ﬂ’/‘
h=nhyP,(k)+hxPx(k) GW at SSB P/
Time-delay interferometry (TDI) @ *}@
® Crucial to cancel laser noise
e First generation: unequal arms XU = [OAT + i) + 007 +yin)ee — 007 + i) - 067 +yin)a)
o . . . . XCW ()
Second generation: propagation and flexing S + Y5 + 5+ yE) 22 — 05 + 9% — 5 + 9D 5] s
e Michelson X,Y,Z - Uncorrelated noises A,E, T > ——— J

Approximations
e Long-wavelength approximation: two moving LIGOs rotated by 7/4 + orbital delay
* Rigid approximation (order of the delays does not matter, delay=L simple in Fourier
domain)
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