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General problem
Posterior distribution 

of parameters 
describing the data

Data 
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Why new methods? 
• Computational speed


• Need for explicit formulation of the noise model (difficult for non-Gaussian 
errors)


• Amortisation of computational cost over large number of events
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Abstract method
• Need for a function  that maps
ℱ

ℱ : d → q(Y |d)

Data

Posterior 
distribution of 
parameters Y

• A normalising flow is one possible realisation of this function


• Very versatile

• Fast to compute

• Fast to sample from
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“Normalising 
direction”


“Generative 
direction”


1 dimensional normalising flow

1908.09257

Mapping  
depends on data

g

q(Y |d) = 𝒩(0,1)D(g−1(Y)) det Jg−1

 Y := g(Z, d)

Find a  such that the 
normal distribution is 

mapped to the posterior

g
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1 dimensional normalising flow: Example

Example 
mapping g

q(Y |d) = 𝒩(0,1)D(g−1(Y)) det Jg−1

 Y := g(Z, d) = g(Z) = |Z | sign(Z)
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1 dimensional normalising flow: Example
Example 

mapping g

 Y := g(Z, d) = g(Z) = |Z | sign(Z)

Spline points can 
approximate 

many functions

7 1906.04032



Mapping in higher dimensions

1908.09257

Mapping  
depends on data

g

 ⃗Y := ⃗g( ⃗Z , d)

q(Y |d) = 𝒩(0,1)D( ⃗g−1( ⃗Y )) det J ⃗g−1
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Elementary step of the normalising flow

Permutation

Mapping is 
non-linear, 

but invertible

1906.04032

Elementary step
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Identity 
transformation

Z1

Z2

Z3

Z4



Normalising flow: Architecture
Many  

elementary steps
𝒪(10)

…

Normalising flow
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Training the flow: Fixing the parameters of the neural network
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Normalising flow

Data

Neural network 
parameters describe 

the spline(s)



Training the flow: Fixing the parameters of the neural network

• Spline points are parametrised by the 
neural network parameters  How to fix 
them? 


• Define the “difference” between two 
distributions


• Define a loss according to this difference


• Tune the network parameters  s.t. 
this loss is minimised (very difficult task, 
since the problem has very high dimension)

→

𝒪(106−9)
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KL(p∥q) ≈ 0

KL(p∥q) > 0

Kullback-Leibler 
divergence



Application of a normalising flow: DINGO
• Demonstrated to allow for fast and efficient sampling in case of individual event 

parameters (Green et al. 2002.07656, Green et al. 2008.03312, Dax et al. 2106.12594, Dax et al. 2111.13139) 

• Distribution learned  
p(θ |strain)

DINGO

Source 
parametersStrain

= Deep INference for 
Gw Observations
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• Generating the training data to extremize the given loss function, s.t.  
converges towards the true posterior distribution 


q(θ |strain)

Loss = 𝔼p(θ)𝔼p(d|θ) [−log q(θ |d)]

Expectation 
value over 

Event parameters 
such as masses, 
distance

Noise 
realisations


Training DINGO

• Modify the network parameters such that loss is minimised
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Hidden in here 
are the network 
parameters



• Generating the training data to extremize some given loss function, s.t.  
converges towards the true posterior distribution 


q(θ |strain)

Loss = 𝔼p(θ)𝔼p(d|θ) [−log q(θ |d)]

Kullback-
Leibler 

divergence

Training DINGO

= 𝔼p(d)𝔼p(θ|d) [−log q(θ |d)]Bayes’ 
theorem

= 𝔼p(d) [KL(p∥q)]+

Measures the difference 
between 2 distributions

constant
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Loss = 𝔼p(θ)𝔼p(d|θ) [−log q(θ |d)]

Expectation 
value over 

Event parameters 
such as masses, 
distance

Noise 
realisations


Likelihood-free inference

• No need for evaluating a likelihood or producing posterior samples!

• Go beyond the approximation of Gaussian stationary noise
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Only simulation of datasets is necessary (likelihood-free inference)



• Generating the training data to extremize some given loss function, s.t.  
converges towards the true posterior distribution 


q(θ |strain)

Loss = 𝔼p(θ)𝔼p(d|θ) [−log q(θ |d)]

Expectation 
value over 

Event parameters 
such as masses, 
distance

Noise 
realisations


Training DINGO
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• Training time ~2 weeks


•  learnable parameters for 2 detectors (  for 3)
1.31 × 108 1.42 × 108



DINGO: First results
GW150914• 15 dimensional parameter space


• Trained from  samples 


• Posterior samples from a fixed 
PSD in seconds! 

𝒪(106)

noise PSD
Sn

strain data
d

time shifts
⌧I

embedding
network

normal
u

flow f
parameters

✓

d�⌧I

128 dims
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Noise curve as input
• Motivation: The PSD is time-

dependent


• Training on PSD calculated from 
real data


• PSD is part of input data (loss is 
modified accordingly)

noise PSD
Sn

strain data
d

time shifts
⌧I

embedding
network

normal
u

flow f
parameters

✓

d�⌧I

128 dims

Dax et al. (PRL 2021)
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Standardising the time of arrival
• Standardising the time of arrival 

makes training easier (dimension 
of data is reduced)


• Recursive process, shown to 
converge within  iterations𝒪(10)

noise PSD
Sn

strain data
d

time shifts
⌧I

embedding
network

normal
u

flow f
parameters

✓

d�⌧I

128 dims

Dax et al. (PRL 2021)
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DINGO: Results

GW150914
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Generating samples is easy (and very fast)

2106.12594

Expect: 0.7  



Sanity check

• The exact likelihood of each sample 
produced from the flow is known 


• Importance sampling: Recover exact 
results with an explicit likelihood by taking 
the DINGO posterior as a proposal 
distribution

→
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2210.05686



Thank you! 


