# Applications of normalising flows in gravitational wave astronomy

#### Konstantin Leyde



"Méthodes d'analyse des données" du GdR Ondes Gravitationnelles, 15.11.2022







### General problem

Data



PhysRevLett.116.061102



1602.03840

# Why new methods?

- Computational speed
- Need for explicit formulation of the noise model (difficult for non-Gaussian) errors)
- Amortisation of computational cost over large number of events







#### Abstract method

• Need for a function  $\mathcal{F}$  that maps

- A normalising flow is one possible realisation of this function
  - Very versatile
  - Fast to compute
  - Fast to sample from





# 1 dimensional normalising flow





### 1 dimensional normalising flow: Example



$$Y := g(Z, d) = g(Z) = \sqrt{|Z|} \operatorname{sign}(Z)$$

$$q(Y|d) = \mathcal{N}(0,1)^D \left( g^{-1}(Y) \right) \operatorname{det} J_g$$

| -1       |   |
|----------|---|
|          |   |
|          |   |
|          |   |
| <b>L</b> | ) |

### 1 dimensional normalising flow: Example



## Mapping in higher dimensions



1908.09257





### Elementary step of the normalising flow







#### Normalising flow: Architecture

Many  $\mathcal{O}(10)$ elementary steps















#### Training the flow: Fixing the parameters of the neural network



![](_page_10_Picture_2.jpeg)

**Neural network** parameters describe the spline(s)

![](_page_10_Figure_5.jpeg)

#### Training the flow: Fixing the parameters of the neural network

- Spline points are parametrised by the neural network parameters → How to fix them?
- Define the "difference" between two distributions
- Define a loss according to this difference
- Tune the network parameters  $\mathcal{O}(10^{6-9})$  s.t. this loss is minimised (very difficult task, since the problem has very high dimension)

![](_page_11_Figure_5.jpeg)

![](_page_11_Picture_7.jpeg)

### Application of a normalising flow: DINGO

- Demonstrated to allow for fast and efficient sampling in case of individual event  $\bullet$
- Distribution learned  $p(\theta | \text{strain})$

![](_page_12_Picture_3.jpeg)

parameters (Green et al. 2002.07656, Green et al. 2008.03312, Dax et al. 2106.12594, Dax et al. 2111.13139)

![](_page_12_Figure_6.jpeg)

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

# Training DINGO

Generating the training data to extremize the given loss function, s.t.  $q(\theta)$  strain) ulletconverges towards the true posterior distribution

![](_page_13_Picture_2.jpeg)

**Event parameters** such as masses, distance

![](_page_13_Picture_4.jpeg)

![](_page_13_Picture_5.jpeg)

Modify the network parameters such that loss is minimised

![](_page_13_Figure_8.jpeg)

![](_page_13_Picture_11.jpeg)

# Training DINGO

Bayes'

theorem

converges towards the true posterior distribution

![](_page_14_Figure_2.jpeg)

Generating the training data to extremize some given loss function, s.t.  $q(\theta | \text{strain})$ 

$$p(d|\theta) \left[ -\log q(\theta | d) \right]$$
$$p(\theta|d) \left[ -\log q(\theta | d) \right]$$

 $= \mathbb{E}_{p(d)} \left[ \frac{KL(p \| q)}{p(d)} \right] + \text{ constant}$ 

Kullback-Leibler divergence

Measures the difference between 2 distributions

![](_page_14_Picture_8.jpeg)

#### Likelihood-free inference Noise Event parameters Expectation realisations such as masses, value over distance $Loss = \mathbb{E}_{p(\theta)}\mathbb{E}_{p(d|\theta)} \left[ -\log q(\theta \mid d) \right]$

![](_page_15_Picture_3.jpeg)

![](_page_15_Picture_4.jpeg)

- No need for evaluating a likelihood or producing posterior samples!
- Go beyond the approximation of Gaussian stationary noise

Only simulation of datasets is necessary (likelihood-free inference)

![](_page_15_Picture_9.jpeg)

# Training DINGO

converges towards the true posterior distribution

![](_page_16_Picture_2.jpeg)

- Training time ~2 weeks
- $1.31 \times 10^8$  learnable parameters for 2 detectors ( $1.42 \times 10^8$  for 3)

#### Generating the training data to extremize some given loss function, s.t. $q(\theta | \text{strain})$

![](_page_16_Figure_6.jpeg)

![](_page_16_Picture_9.jpeg)

### DINGO: First results

- 15 dimensional parameter space
- Trained from  $\mathcal{O}(10^6)$  samples
- Posterior samples from a fixed PSD in seconds!

![](_page_17_Figure_4.jpeg)

![](_page_17_Figure_5.jpeg)

![](_page_17_Picture_7.jpeg)

#### Noise curve as input

- Motivation: The PSD is timedependent
- Training on PSD calculated from real data
- PSD is part of input data (loss is modified accordingly)

Dax et al. (PRL 2021)

![](_page_18_Figure_5.jpeg)

![](_page_18_Picture_7.jpeg)

![](_page_18_Figure_8.jpeg)

### Standardising the time of arrival

- Standardising the time of arrival makes training easier (dimension of data is reduced)
- Recursive process, shown to converge within  $\mathcal{O}(10)$  iterations

Dax et al. (PRL 2021)

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_6.jpeg)

![](_page_19_Picture_7.jpeg)

![](_page_19_Picture_8.jpeg)

#### DINGO: Results

|            | mj  | ma  | Ø   | dj  | $q_{j}$ | <i>a</i> <sub>2</sub> | 01  | Øz  | ØJ2 | ØJL | O JN | Ķ   | Q   |
|------------|-----|-----|-----|-----|---------|-----------------------|-----|-----|-----|-----|------|-----|-----|
| GW150914 - | 0.8 | 1.1 | 0.2 | 0.8 | 0.2     | 0.3                   | 0.5 | 0.5 | 0.1 | 0.3 | 0.8  | 0.2 | 0.7 |
| GW151012 - | 2.7 | 1.6 | 0.1 | 0.9 | 0.4     | 0.2                   | 0.5 | 0.5 | 0.1 | 0.1 | 0.6  | 0.1 | 1.4 |
| GW170104 - | 6.4 | 2.6 | 0.2 | 0.4 | 0.7     | 0.1                   | 0.7 | 0.4 | 0.1 | 0.1 | 0.3  | 0.3 | 0.8 |
| GW170729 - | 0.9 | 1.5 | 0.4 | 6.3 | 0.2     | 0.2                   | 1.0 | 0.8 | 0.2 | 0.3 | 3.4  | 0.3 | 1.2 |
| GW170809 - | 0.5 | 0.8 | 0.1 | 0.5 | 0.2     | 0.1                   | 0.4 | 0.4 | 0.1 | 0.5 | 1.4  | 0.2 | 2.2 |
| GW170814 - | 1.2 | 1.3 | 0.2 | 1.5 | 0.2     | 0.2                   | 0.4 | 0.3 | 0.2 | 1.4 | 1.4  | 1.2 | 2.5 |
| GW170818 - | 1.6 | 1.3 | 0.2 | 1.1 | 1.0     | 0.2                   | 1.9 | 0.5 | 0.1 | 2.4 | 1.8  | 0.4 | 3.8 |
| GW170823 - | 0.5 | 0.6 | 0.1 | 0.9 | 0.2     | 0.2                   | 0.4 | 0.2 | 0.2 | 0.2 | 0.5  | 0.2 | 0.4 |

Expect: 0.7

Generating samples is easy (and very fast)

#### 2106.12594

![](_page_20_Figure_5.jpeg)

![](_page_20_Picture_7.jpeg)

### Sanity check

- The exact likelihood of each sample produced from the flow is known  $\rightarrow$ 
  - Importance sampling: Recover exact results with an explicit likelihood by taking the DINGO posterior as a proposal distribution

#### 2210.05686

![](_page_21_Picture_5.jpeg)

![](_page_21_Picture_7.jpeg)

Thank you!