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MCMC allows to draw samples from the posterior distribution



MARKOV CHAIN MONTE CARLO

e Estimate the posterior by stochastically
wandering through the parameter space

e Distribute samples « density of target

posterior distribution

e E.g. Metropolis-Hastings algorithm:
e Given a starting point ®, use a proposal density function Q(®O’|®) to draw
a new sample O’ which can only depend on the current sample ®

p(®'|D,H) Q(0|0O) )

e New proposal accepted with probability r, = min (1,
For ’ ’ ’ p(©|D.H) 0(@'|©)

e If accepted, add ®' to the chain, otherwise O is repeated



MCMC LIMITATIONS & OPTIMISATIONS

e Start chains from random location in parameter space
e Discard initial samples (burn-in period) in order to lose dependence of
initial location

¢ [f we want statistically independent samples, remove correlation between

adjacent samples in the chain:
e Thin each chains by its integrated autocorrelation time (ACT)

e Samples left after burn-in and ACT thinning are the effective samples

e Run parallel chains to increase the number of effective samples



MCMC LIMITATIONS & OPTIMISATIONS

¢ Efficiency of Metropolis-Hastings strongly depends on the choice of proposal
density, e.g. Gaussian centred on O (the choice of o affects the acceptance rate)

® For complicated multi-modal target distributions:
e Parallel tempering MCMC

P(O|D) T P(®|H,I)

e Increasing 7 “flattens” the posterior and broadens peaks: easier to sample

e As T — oo, the posterior becomes the prior

e Construct ensemble of tempered chains from 7 € [1, 7]

e High-7 chains sample a distribution closer to the prior: easier to explore the parameter space
and move between modes

e Pass information about regions of high posterior support found from the high-7 chains to
increase sampling efficiency of T = 1 chain by periodically proposing swaps in the locations of

adjacent chains.



MCMC vs NS
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Figure 1. A schematic representation of the different approaches MCMC methods and nested sampling methods take to sample from the posterior. While
MCMC methods attempt to generate samples directly from the posterior, nested sampling instead breaks up the posterior into many nested ‘slices’, generates
samples from each of them, and then recombines the samples to reconstruct the original distribution using the appropriate weights.

Speagle, MNRAS (2020)
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OVERVIEW

* Nested sampling (NS) in a nutshell

® Main challenges and limitations

¢ Implementations & distributions: what’s out there
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QUICK FACTS ABOUT NS

e NS is primarily an algorithm to integrate challenging high-
dimensional integrals

¢ In Bayesian inference, the difficult integral we want to compute
is the “evidence”

¢ As a by-product of this computation, we also obtain posterior
samples
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Posterior

P(®|D,H,I) =

BAYES' THEOREM
®=1{0,0,...,0y

[ikelihood Prior

P(D|®,H.I) P(®|H,I)

P(D|H, I

Evidence
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Posterior

P(©|D)

BAYES’ THEOREM

[ikelihood

Z(0O)

/

Evidence

Prior

n(®)
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BAYES’ THEOREM

[ikelihood Prior

Posterior A (@) JU (@)
P(® | D)

V4
Evidence = J Z(O)n(0)de
Q

©

/\/

N-dim integral over an N-D parameter space
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BAYES" THEOREM

Likelihood Prior
Posterior A (@) 71'(@)
PO|D) =
/ 1

Evidence = J I:(X) dX

"\

L:[0,1] = I
NS transforms it into a 1-D integral
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NS: STEP 1/3

Introduce the prior volume: Z(®) > 0

A € 10,00)
X(A) = J n(®) dO X € (0,1]
Qy: L(©)> )

X(4) = amount of prior probability with likelihood greater than 4

= tot. prob. vol. contained within a iso-likelihood contour def. by A

X0)=1

— if 3!
oo X(co0)=0 if A1 L .
prior volume X

Contour A
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NS: STEP 2/3

Xt = |

Qn: L (O) >4 Qg
7(®)/X(1)

Constrained prior: 7,(0) = {O

7 = [ LOr(O) dO = JOO
Qp 0

7(©) dO = [ 7,(0) dO

if Z(®) > A

otherwise

X(2) di
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NS: STEP 3/3

Define L(X) as the inverse of the prior volume X(Z£'(®) = A): L(X(1)) = A

L(X) is a monotonically decreasing function of X Higher 4 <= Lower X

/ = [ Z(O)n(O) dO
Q

® L

= [mX(ﬂ) d/
0

not to sca

le

1
= J L(X) dX 0 X

() Skilling (2006)
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NS: STEP 3/3

Define L(X) as the inverse of the prior volume X(Z£'(®) = A): L(X(1)) = A

L(X) is a monotonically decreasing function of X

/ = [ Z(O)n(O) dO
Q

Q)

= [ X(A) dA
0 ~
Miter L

a4

2l (Xi—l - i+1)

—1

L; computable
X; uncertain!

trapezoidal rule

0-1
0

Skilling (2006)
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NS ALGORITHM

Uniformly distributed live points

1. Sample a set of initial n;, . “live points” {©O,...,0,  }

> T Njve

from the entire prior distribution 7(®) and sort them

by their likelihood values

Remove worst

2. Remove the point with the lowest likelihood 4,

—% “um—— un .
%6

Draw replacement

3. Replace the “dead point” by a new sample with D .o |
higher likelihood drawn from @1(@) X,

Compression, ¢ ~ ﬁ(”live’ 1)

Repeat 1., times

until a stopping condition is reached

0.0 0.5

Ashton et al., (2022)
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SCHEMATIC OF THE NS ALGORITHM

. Choose an estimate of the compression factor, e.g., t = ¢~ /v

. Initialise volume, X, = 1 and evidence, Z = 0

. Sample a set of initial n;,. “live points” from the entire prior distribution z(®)
REPEAT

1. Let A_. be the minimum L of the live points

min Py one drawn from the constrained prior z; (©)

AX, withe.g.,, AX = (1 — X

2. Replace live point associated to 4

3. Increment the estimate of the evidence, Z = Z + A
4. Contract volume, X = tX

UNTIL stopping condition is satisfied
. Add estimate of remaining evidence, e.g., Z = Z + LX, where L is the average likelihood

min

among the live points
. Return the estimate of the integral Z
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NS ALGORITHM

i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes X
ii) Sort them by likelihood

L Z(X) y| “Nested” L contours
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Figure 3: Nested likelihood contours are sorted to enclosed prior mass X.




NS ALGORITHM

i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes X
ii) Sort them by likelihood
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i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes X
ii) Sort them by likelihood
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Figure 3: Nested likelihood contours are sorted to enclosed prior mass X.
Skilling (2006)
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i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes X
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POSTERIOR SAMPLES “FOR FREE”

“Recycle” full sequence of discarded, low-likelihood live points + final live points, to

which an importance weight is assigned:

®ia ﬁ(@l) —

zi(Xi—l - i+1)/2

/

o800 o—©o -0 not to scale

0 8 samples X 1

0

O_. iS Step 5 Niye = 3

0 X, Step4

00 \/

0 X, Step3

® —(@

0 X, Step2
o*—o \_/

0 X, Stepl
*—o \J

0 1

Enclosed prior mass X

Skilling (2006)
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EXAMPLE: CBCs

100}
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<)
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10°Y 1073 10 10=7 107° 10~ 1071 1071 10°Y7
/ Prior Support Fraction X
Veitch et al., PRD (2015) |LALInferenceNest] \

sampling sampling tiny restricted

entire prior part of prior

NS proceeds from L to R
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® Nested sampling (NS) in a nutshell

* Main challenges and limitations

¢ Implementations & distributions: what’s out there
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#1: NS UNCERTAINTIES

1

v/ Mive
- Sampling uncertainties (# samples, discrete point estimates for
contours, particle path dependencies)

- Statistical uncertainties (due to unknown X.): o[logZ] ~

Provided NS is appropriately configured, the statistical uncertainty
usually dominates

29



#2: STOPPING CONDITIONS
Nitor Z
4 = Z ?l (Xi_1 — Xip1)
=1

We want the truncation error to be small
E.g. use an estimate of the remaining evidence AZ/Z < tol:

Check whether the evidence estimate would change by more than a factor of
~0.1 if all the remaining prior support were at L .

L XIZ >e01

max,l?

NB: if the summation is terminated too early, we could miss a spike of enormous
likelihood lurking inward.
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#3: HOW TO CHOOSE n;;. .2

¢ Trade-off between run-time and uncertainty
® 1. controls the rate of compression as Alog X ~ 1/n;,,. per iteration
e Run-time scales as O(ny;,,.)

e However AlogZ ~ O(1/,/n;.)

e 11;... should exceed the dimensionality of the parameter space

e NB In multi-modal problems, choose 7y, large enough that at any time 7,(©)
splits into disjoint modes (at least one live point inside the footprint of each mode)
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#4: STATIC vs DYNAMIC(C?

Fixed n;;, . during the run (static NS) VS Varying n;; . during the run (dynamic NS)

® 7. can be dynamically adjusted to maximise calculation accuracy and improve computational

efficiency
® The user can decide if to have less uncertainty on Z or on the posterior
Dynamically add live points near peak
. . ® Original samples
o Var lant Of dynamIC: > ® Dynamically added samples
. . =

diffusive NS (#;,,. can S Run

% terminates
Change at a glven /I) E Direction of iteration

kS -————-m-m—

E AlOgX ~ 1/nlive

Increase ;. —
0 4 here
Speagle, MNRAS (2020) [dynesty] -H 0

log X

a | Schematic representation of an NS run. The curve L(X)X shows the relative posterior mass, the bulk of which lies in a tiny fraction e~ of
the volume. Most of the original samples lie in regions with negligible posterior mass. In dynamic NS, we add samples near the peak.

Information

a.k.a. 7 B -
O|D L(X. . ,—X._ L, volume of prior
Kullback-Liebler H = Jp(@|D) log pOID) d® ~ E K ) log | —| =~ log P :
7(O) V4 V4 volume of posterior 2

divergence i



#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

7(O) if Z(0) > 4

0 otherwise

7,(0) {

® Very difficult, especially in multi-modal problems

e NS is self-tuning: use the live points to build proposal structures and apply clustering
algorithms

® Two main classes of sampling: region sampling, step sampling

e NB In multi-modal problems, if no live points lie inside a mode, that region of 7,(®)
almost certainly won’t be sampled

[t’s easier to work in the hypercube, a parametrisation in which the prior is uniform over a unit hypercube
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

We must sample from the true iso-likelihood contour (grey ellipse)

region samplers

Region sampling

e Attempt to bound the existing live points (blue ellipse)
e Draw a new sample from within that bound
*Some proposals may be rejected

Major limitations:
eaccuracy of bounds strongly depends on 7y,

" Re eaccuracy and efficiency scale exponentially with D

Ellipsoid sampling
Ashton et al., (2022)

Efficient and practical only for moderate-to-low dimensionalities (D<20)
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

We must sample from the true iso-likelihood contour (grey ellipse)

e Computational cost:
polynomial scaling with D

eSelect a live point
eEvolve that point within inside the
contour to obtain an independent
draw from 7,(0), e.g.
erandom-walk Metropolis
eslice sampling

step samplers

Step sampling

Random walk
Ashton et al., (2022)

Slice sampling

N

Efficient when
3(91, 92, 93) — SlOW(Ql) X faSt(ez, 93)
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

We must sample from the true iso-likelihood contour (grey ellipse)

2000 [
¢ Computational cost:
polynomial scaling with D go A000F
O
—
eSelect a live point =
. ] . ] ) '_CC:S 3000 ..............................................................................................................
eEvolve that point within inside the 5
. . |
contour to obtain an independent H
3 2000
draw from 7,(0), e.g. i
erandom-walk Metropolis = 000
eslice sampling =
ol ; ; ; ; ; ; ;
10-t 1072 10 10=" 107° 10~ 1071 10-% 10717
NB ollog Z] depends also on Prior Support Fraction X
length of MCMC subchains Veitch et al., PRD (2015) [LALInferenceNest]
/ ,

Variable MCMC chain length and GW-specific jump proposals can be used to exploit
correlations between parameters and efficiently sample between isolated modes



#6: PARALLELISATION?

Although NS is a sequential method, parallelisation can be used to increase
#posterior samples

1 NS with M “live points” = M NS with 1 live point

e Run independent NSs on different CPU cores, then combine the results weighted by
their respective evidence

e More chains producing samples

e Each chain is weighted by its respective evidence

Also the number of replacements per iteration may be varied
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HOW TO CHECK RESULTS?

% Compute the evidence integral for problems with known analytic solutions, e.g.:
e multi-dimensional Gaussian likelihood (D=200)
*Eggo-box

250

200

150
250

200
150
100

250
200
50 150
0 100

15
20

e Gaussian shells 30 0 Feroz et al., (2013) [MultiNest]

[f modes are missed,
Increase ;..

% Check that live points are independently drawn from 7,(®)

% Compare posterior samples between different NS implementations and /or MCMC
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NS IMPLEMENTATIONS

Code Methods Dynamic Languages Field Pub. Year

CosmoNest [60, 61] ellipsoid fixed Fortran Cosmology 2006
. : e s Fortran,

region MultiNest [48, 84] multi-ellipsoid fixed C/C++, Python Cosmology 2008
m 1 r DIAMONDS [249] multi-ellipsoid fixed C++ Astrophysics 2015
54 p CIS nestle [250] ellipsoid, multi-ellipsoid fixed Python Astrophysics 2015
nessai [90, 91] normalising flow ellipsoid fixed Python Gravitational waves 2021
(dy)PolyChord [53, 65] slice dynamic Fortran, Cosmology 2015

C/C++, Python
random walk, ensemble,
differential evolution
Nested_fit [104, 257, 258] random walk fixed Fortran Atomic physics 2016
slice, differential evolution,

LALInferenceNest [180] fixed C Gravitational waves 2015

step

cpnest [259] Gauss. Hamiltonian. ensemble fixed Python Gravitational waves 2017
S ampler S _ random walk, Galilean, ,
pymatnest [44] . o fixed Python Materials 2017
symplectic Hamiltonian
NNest [261] normalising flow random walk fixed Python Cosmology 2019
DNest5 [55] user-defined, random walk diffusive C++ Astrophysics 2020
BayesicFitting [263] random walk, slice, Galilean, Gibbs fixed Python Astronomy 2021
: dynesty [52] ellipsoid, multl-.elhp smd., ML.Frlends dynamic Python Astrophysics 2020
region / Step & Gauss, slice, Hamiltonian
UltraNest [92] MLFriends + ellipsoid & Gauss, reactive Python, Julia, R, Astronhvsics 2020
Samplers hit-and-run, slice C/C++, Fortran Py
jaxns [266] multi-ellipsoid & slice fixed jax Astronomy 2021

Table 2 | Comparison of NS codes. The first two groups are region samplers and step samplers, respectively, whereas the third
group offers both. Dynamic implementations allow the number of live points to be changed during a run. We show the language
in which the NS code was written followed by any additional languages for which interfaces exist, and the field from which the
code originated (though most are general purpose codes).

Ashton et al., (2022) 40



BENEFITS OF NS

Ashton et al., (2022)

o [t simultaneously returns results for parameter inference and
model comparison

® [t is successtul in multi-modal problems

® [t is naturally self-tuning
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DRAWBACKS AND CHALLENGES OF NS

Ashton et al., (2022)

¢ Draw independent samples from the constrained prior
® Due to the point above, NS may miss modes
¢ Inefficiently sample from the constrained prior

¢ Hard with particularly awkward likelihood (e.g. with plateaus)
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Thank you for listening
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EXTRA SLIDES
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