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BAYES’ THEOREM

P(Θ |D, H, I) ∝ P(D |Θ, H, I) P(Θ |H, I)
Posterior Likelihood Prior

Θ = {θ1, θ2, …, θN}

MCMC allows to draw samples from the posterior distribution



• Estimate the posterior by stochastically 
wandering through the parameter space 

• Distribute samples      density of target 
posterior distribution

∝
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MARKOV CHAIN MONTE CARLO

• E.g. Metropolis-Hastings algorithm:
• Given a starting point , use a proposal density function  to draw 

a new sample  which can only depend on the current sample  

• New proposal accepted with probability    

• If accepted, add  to the chain, otherwise  is repeated

Θ Q(Θ′￼|Θ)
Θ′￼ Θ

rs = min (1,
p(Θ′￼|D, H) Q(Θ |Θ′￼)
p(Θ |D, H) Q(Θ′￼|Θ) )

Θ′￼ Θ
detailed balance

Hastings



• Start chains from random location in parameter space
• Discard initial samples (burn-in period) in order to lose dependence of 

initial location 

• If we want statistically independent samples, remove correlation between 
adjacent samples in the chain:

• Thin each chains by its integrated autocorrelation time (ACT) 
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MCMC LIMITATIONS & OPTIMISATIONS

• Samples left after burn-in and ACT thinning are the effective samples

• Run parallel chains to increase the number of effective samples



• Efficiency of Metropolis-Hastings strongly depends on the choice of proposal 
density, e.g. Gaussian centred on  (the choice of  affects the acceptance rate) 

• For complicated multi-modal target distributions:
• Parallel tempering MCMC 

Θ σ
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PT(Θ |D) ∝ P(D |Θ, H, I) P(Θ |H, I)
1
T

• Increasing  “flattens” the posterior and broadens peaks: easier to sample
• As , the posterior becomes the prior
• Construct ensemble of tempered chains from 
• High-  chains sample a distribution closer to the prior: easier to explore the parameter space 

and move between modes
• Pass information about regions of high posterior support found from the high-  chains to 

increase sampling efficiency of  chain by periodically proposing swaps in the locations of 
adjacent chains. 

T
T → ∞

T ∈ [1, Tmax]
T

T
T = 1

MCMC LIMITATIONS & OPTIMISATIONS
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Speagle, MNRAS (2020)

MCMC vs NS
single hard

problem

multiple easy
problems
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OVERVIEW

•Nested sampling (NS) in a nutshell

•Main challenges and limitations

•Implementations & distributions: what’s out there

Danny Laghi
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QUICK FACTS ABOUT NS

•NS is primarily an algorithm to integrate challenging high-
dimensional integrals

•In Bayesian inference, the difficult integral we want to compute 
is the “evidence” 

•As a by-product of this computation, we also obtain posterior 
samples
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BAYES’ THEOREM

P(Θ |D, H, I) =
P(D |Θ, H, I) P(Θ |H, I)

P(D |H, I)

Posterior

Likelihood Prior

Evidence

Θ = {θ1, θ2, …, θN}
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BAYES’ THEOREM

P(Θ |D) =
Z

Posterior

Likelihood Prior

Evidence

ℒ(Θ) π(Θ)
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BAYES’ THEOREM

=
Z

Posterior

Likelihood Prior

Evidence

ℒ(Θ) π(Θ)

= ∫ΩΘ

ℒ(Θ) π(Θ) dΘ

N-dim integral over an N-D parameter space

P(Θ |D)
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BAYES’ THEOREM

=
Z

Posterior

Likelihood Prior

Evidence

ℒ(Θ) π(Θ)

= ∫
1

0
L̃(X) dX

NS transforms it into a 1-D integral

P(Θ |D)

L̃ : [0,1] → ℝ+
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X(λ) = ∫ΩΘ : ℒ(Θ) ≥ λ
π(Θ) dΘ

NS: STEP 1/3

Introduce the prior volume: 

λ ∈ [0,∞)
X ∈ (0,1]

    if 
X(0) = 1
X(∞) = 0 ∃! ℒmax

X(λ) = amount of prior probability with likelihood greater than λ
= tot. prob. vol. contained within a iso-likelihood contour def. by λ

ℒ(Θ) ≥ 0

Contour λ

encloses
prior volume X
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NS: STEP 2/3

Z = ∫ΩΘ

ℒ(Θ)π(Θ) dΘ = ∫
∞

0
X(λ) dλ

X(λ) = ∫ΩΘ : ℒ(Θ) ≥ λ
π(Θ) dΘ ≡ ∫ΩΘ

πλ(Θ) dΘ

Constrained prior: πλ(Θ) = {π(Θ)/X(λ) if ℒ(Θ) ≥ λ
0 otherwise
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Z = ∫ΩΘ

ℒ(Θ)π(Θ) dΘ

= ∫
∞

0
X(λ) dλ

NS: STEP 3/3

 is a monotonically decreasing function of  L̃(X) X

Define  as the inverse of the prior volume :   L̃(X) X(ℒ(Θ) = λ) L̃(X(λ)) = λ

Skilling (2006)

~

= ∫
1

0
L̃(X) dX

Higher Lower λ ⟺ X
not to scale



niter

~

~
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Z = ∫ΩΘ

ℒ(Θ)π(Θ) dΘ

= ∫
∞

0
X(λ) dλ

NS: STEP 3/3

 is a monotonically decreasing function of  L̃(X) X

Define  as the inverse of the prior volume :   L̃(X) X(ℒ(Θ) = λ) L̃(X(λ)) = λ

Skilling (2006)

≃
niter

∑
i=1

L̃i

2
(Xi−1 − Xi+1)

trapezoidal rule

 computable
 uncertain!

L̃i
Xi
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NS ALGORITHM

1. Sample a set of initial  “live points” 
from the entire prior distribution  and sort them 
by their likelihood values 

2. Remove the point with the lowest likelihood  
 
 

3. Replace the “dead point” by a new sample with 
higher likelihood drawn from 

nlive {Θ1, …, Θnlive
}

π(Θ)

λ1

πλ1
(Θ)

Repeat  times 
until a stopping condition is reached

niter

Ashton et al., (2022)

X1

X1

X1
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SCHEMATIC OF THE NS ALGORITHM

1. Choose an estimate of the compression factor, e.g., 
2. Initialise volume,  and evidence, 
3. Sample a set of initial  “live points” from the entire prior distribution  

REPEAT
1. Let  be the minimum  of the live points
2. Replace live point associated to  by one drawn from the constrained prior 
3. Increment the estimate of the evidence, , with e.g., 
4. Contract volume, 
UNTIL stopping condition is satisfied

4. Add estimate of remaining evidence, e.g., , where  is the average likelihood 
among the live points 

5. Return the estimate of the integral 

t = e−1/nlive

X0 = 1 Z = 0
nlive π(Θ)

λmin L̃
λmin πλmin

(Θ)
Z = Z + λminΔX ΔX = (1 − t)X

X = tX

Z = Z + L̄X L̄

Z
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NS ALGORITHM

0 < Xniter
< ⋯ < X3 < X2 < X1 < X0 = 1

L̃i = L̃(Xi) = λi

L̃niter
> ⋯ > L̃3 > L̃2 > L̃1 > 0

i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes 
ii) Sort them by likelihood

Xi

~
~

~

~

~

~

~

Skilling (2006)

Θniter
⋯ Θ3 Θ2 Θ1

λ1

λ2

λ3

“Nested”  contoursL̃
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NS ALGORITHM

0 < Xniter
< ⋯ < X3 < X2 < X1 < X0 = 1

i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes 
ii) Sort them by likelihood

Xi

~
~

~

~

~

~

~

Skilling (2006)

L̃niter
> ⋯ > L̃3 > L̃2 > L̃1 > 0

∼π(Θ)

Θniter
⋯ Θ3 Θ2 Θ1

L̃i = L̃(Xi) = λi
λ1

λ2

λ3

“Nested”  contoursL̃
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NS ALGORITHM

0 < Xniter
< ⋯ < X3 < X2 < X1 < X0 = 1

i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes 
ii) Sort them by likelihood

Xi

~
~

~

~

~

~

~

Skilling (2006)

L̃niter
> ⋯ > L̃3 > L̃2 > L̃1 > 0

∼πλ1
(Θ)

Θniter
⋯ Θ3 Θ2 Θ1

L̃i = L̃(Xi) = λi
λ1

λ2

λ3

“Nested”  contoursL̃
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NS ALGORITHM

0 < Xniter
< ⋯ < X3 < X2 < X1 < X0 = 1

i) Divide the unit prior volume into a monotonic decreasing sequence of prior volumes 
ii) Sort them by likelihood

Xi

~
~

~

~

~

~

~

Skilling (2006)

L̃niter
> ⋯ > L̃3 > L̃2 > L̃1 > 0

∼πλ2
(Θ)

Θniter
⋯ Θ3 Θ2 Θ1

L̃i = L̃(Xi) = λi
λ1

λ2

λ3

“Nested”  contoursL̃
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POSTERIOR SAMPLES “FOR FREE”

Skilling (2006)

“Recycle” full sequence of discarded, low-likelihood live points + final live points, to 
which an importance weight is assigned:

{Θi, ̂p(Θi) =
L̃i(Xi−1 − Xi+1)/2

Z }

X

L̃

nlive = 3

not to scale
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EXAMPLE: CBCs

Veitch et al., PRD (2015) [LALInferenceNest]

λ

NS proceeds from L to R

~

sampling 
entire prior

sampling tiny restricted 
part of prior
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OVERVIEW

•Nested sampling (NS) in a nutshell

•Main challenges and limitations

•Implementations & distributions: what’s out there

Danny Laghi
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#1: NS UNCERTAINTIES

- Statistical uncertainties (due to unknown ):     

- Sampling uncertainties (# samples, discrete point estimates for 
contours, particle path dependencies)

Provided NS is appropriately configured, the statistical uncertainty 
usually dominates

Xi σ [log Z] ∼
1
nlive



30

#2: STOPPING CONDITIONS

L̃max,iXi/Zi > e0.1

We want the truncation error to be small

E.g. use an estimate of the remaining evidence :

Check whether the evidence estimate would change by more than a factor of 
~0.1 if all the remaining prior support were at 

ΔZ/Z < tol

L̃max

Z ≃
niter

∑
i=1

L̃i

2
(Xi−1 − Xi+1)

NB: if the summation is terminated too early, we could miss a spike of enormous 
likelihood lurking inward.
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#3: HOW TO CHOOSE ?nlive

•Trade-off between run-time and uncertainty
•  controls the rate of compression as    per iteration
• Run-time scales as 
• However 

•  should exceed the dimensionality of the parameter space 

•NB In multi-modal problems, choose  large enough that at any time  
splits into disjoint modes (at least one live point inside the footprint of each mode)

nlive Δ log X ≃ 1/nlive
𝒪(nlive)

Δ log Z ≃ 𝒪(1/ nlive)

nlive

nlive πλ(Θ)
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#4: STATIC vs DYNAMIC?

Fixed  during the run (static NS)          vs          Varying  during the run (dynamic NS)

•  can be dynamically adjusted to maximise calculation accuracy and improve computational 
efficiency

• The user can decide if to have less uncertainty on Z or on the posterior

nlive nlive

nlive

H = ∫ p(Θ |D) log ( p(Θ |D)
π(Θ) ) dΘ ≃ ∑

i

L̃i(Xi+1 − Xi−1)
Z

log [ L̃i

Z ] ≃ log ( volume of prior
volume of posterior )

Increase 
here

nlive

Speagle, MNRAS (2020) [dynesty]

Information
a.k.a. 

Kullback-Liebler 
divergence

• Variant of dynamic:
diffusive NS (  can 
change at a given )

nlive
λ
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

• Very difficult, especially in multi-modal problems

• NS is self-tuning: use the live points to build proposal structures and apply clustering 
algorithms

• Two main classes of sampling: region sampling, step sampling 

• NB In multi-modal problems, if no live points lie inside a mode, that region of  
almost certainly won’t be sampled

πλ(Θ)

πλ(Θ) ∝ {π(Θ) if ℒ(Θ) > λ
0 otherwise

It’s easier to work in the hypercube, a parametrisation in which the prior is uniform over a unit hypercube
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

region samplers step samplers

•Attempt to bound the existing live points (blue ellipse)
•Draw a new sample from within that bound
•Some proposals may be rejected

Major limitations:
•accuracy of bounds strongly depends on 
•accuracy and efficiency scale exponentially with D

nlive

Efficient and practical only for moderate-to-low dimensionalities (D 20) ≤

We must sample from the true iso-likelihood contour (grey ellipse)

Ashton et al., (2022)
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

region samplers step samplers

•Select a live point
•Evolve that point within inside the 
contour to obtain an independent 
draw from , e.g.

•random-walk Metropolis
•slice sampling

πλ(Θ)

• Computational cost: 
polynomial scaling with D 

Efficient when
ℒ(θ1, θ2, θ3) = slow(θ1) × fast(θ2, θ3)

We must sample from the true iso-likelihood contour (grey ellipse)

Ashton et al., (2022)
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#5: HOW TO DRAW FROM THE CONSTRAINED PRIOR?

region samplers step samplers

•Select a live point
•Evolve that point within inside the 
contour to obtain an independent 
draw from , e.g.

•random-walk Metropolis
•slice sampling

πλ(Θ)

• Computational cost: 
polynomial scaling with D 

We must sample from the true iso-likelihood contour (grey ellipse)

Variable MCMC chain length and GW-specific jump proposals can be used to exploit 
correlations between parameters and efficiently sample between isolated modes

NB  depends also on 
length of MCMC subchains

σ[log Z]
Veitch et al., PRD (2015) [LALInferenceNest]
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#6: PARALLELISATION?

Although NS is a sequential method, parallelisation can be used to increase 
#posterior samples 

1 NS with M “live points” = M NS with 1 live point

• Run independent NSs on different CPU cores, then combine the results weighted by 
their respective evidence

• More chains producing samples
• Each chain is weighted by its respective evidence

Also the number of replacements per iteration may be varied



★Compute the evidence integral for problems with known analytic solutions, e.g.:
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HOW TO CHECK RESULTS?

•Egg-box

•Gaussian shells

★Check that live points are independently drawn from 
★Compare posterior samples between different NS implementations and/or MCMC

πλ(Θ)

If modes are missed,
increase nlive

•multi-dimensional Gaussian likelihood (D=200)

Feroz et al., (2013) [MultiNest]
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OVERVIEW

•Nested sampling (NS) in a nutshell

•Main challenges and limitations

•Implementations & distributions: what’s out there
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NS IMPLEMENTATIONS

Ashton et al., (2022)

region
samplers

step
samplers

region/step
samplers
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BENEFITS OF NS

•It simultaneously returns results for parameter inference and 
model comparison

•It is successful in multi-modal problems 

•It is naturally self-tuning

Ashton et al., (2022)
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DRAWBACKS AND CHALLENGES OF NS

•Draw independent samples from the constrained prior

•Due to the point above, NS may miss modes 

•Inefficiently sample from the constrained prior 

•Hard with particularly awkward likelihood (e.g. with plateaus)

Ashton et al., (2022)
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Thank you for listening

Danny Laghi



44

EXTRA SLIDES


