Constraining constant and tomographic coupled dark energy with low- and highredshift probes

- **CosmoStat, CEA Paris-Saclay**
- Supervisors: Valeria Pettorino, Martin Kilbinger
- **Collaborators: Adrià Gómez-Valent, Valeria Pettorino, Martin Kilbinger**

Lisa Goh

lisa.goh@cea.fr

Colloque Action Dark Energy 2022, Marseille

- Introduction & Motivation 1.
- 2. Coupled Dark Energy Formalism
- 3. Data and Methodology
- Results 4.
- 5. Conclusion

Contents

Context/Motivation

yet some questions remain:

•What is the **true nature** of 'dark energy'? •Why is there a $\sim 5\sigma$ tension between the value of the Hubble constant derived from the Cosmic Microwave Background at high redshifts ($H_0 = (67.4 \pm 0.5)$ km/s/Mpc), and lower-redshift distance ladder measurements ($H_0 = (73.04 \pm 1.04) \text{ km/s/Mpc}$)?

IS THE ACDM MODEL SUFFICIENT?

The concordance ACDM model has been very successful at describing our Universe,

Coupled Dark Energy Formalism

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- We study a form of a **Coupled Quintessence model**
 - Dark energy takes on the form of a scalar field ϕ
 - Mediates interactions between dark matter particles these particles feel a 'fifth force'
 - Mass of DM particles $m(\phi)$ is dependent on the field

• ΛCDM model extensions typically involve modifying Einstein's Field Equations:

Coupled Dark Energy Formalism

$$\nabla^{\mu}T^{\phi}_{\mu\nu} = \kappa\beta T^{\rm dm}\nabla_{\nu}\phi$$

- (DE field) (in Λ CDM, β = 0)

• In coupled dark energy models, we start from the energy-momentum tensor:

;
$$\nabla^{\mu}T^{\mathrm{dm}}_{\mu\nu} = -\kappa\beta T^{\mathrm{dm}}\nabla_{\nu}\phi$$
,

where β quantifies the **coupling strength** between dark matter (DM) and the dark energy

Coupling strength β has been constrained to be on the order of $\mathcal{O}(10^{-1})$ or less

Tomographic Coupled Dark Energy

- The case of a constant coupling has been studied substantially in literature
- Here we propose a form of parametrisation for β, where it can vary with redshift:

$$eta(z) = rac{eta_1 + eta_n}{2} + rac{1}{2} \sum_{i=1}^{n-1} (eta_{i+1} - eta_i) anh[s_i(z)]$$

where β_i is the amplitude of each tomographic bin and s_i is the smoothing factor between bins

- How do background quantities change?
 - ° Value of H_0 shifts
 - Ω_m decreases

7

10

Methodology Data

Cosmic Microwave Background: 1.

- Planck 2018 TT, TE and EE
- Atacama Cosmology Telescope (ACT) Data Release 4 TT, TE and EE
- South Pole Telescope (SPT) TE and EE
- **Baryonic Acoustic Oscillations** (BOSS, eBOSS, WiggleZ, DES Y₃): 0.122 < z < 2.34 2.
- **Redshift Space Distortions** (BOSS, WiggleZ, VIMOS, SDSS): 0.03 < z < 1.36 3.
- **Type 1a Supernovae** (Pantheon, DES Y₃ SN) 4.
- **Cosmic Chronometers** (measurements of H(z) from evolving galaxies): 0.07 < z < 1.905 5.
- **SHOES** prior: $H_0 = (73.04 \pm 1.04) \text{ km/s/Mpc}$ 6.
- Weak Lensing: KiDS-1000 cosmic shear, BOSS DR12 spectroscopic galaxy clustering and their 3x2pt

Methodology

- constrain our tomographic coupling model
- How will different combinations of datasets affect constraints on $\beta(z)$?

• We modify the Boltzmann solver Cosmic Linear Anisotropy Solving System (CLASS) and run Monte Carlo Markov Chains, performing a likelihood analysis to

Results

3-bin model with CMB Z={0,100,1000}

- Planck650+ACT+SPT allows for **largest values** of $\beta(z)$: most of constraining power comes from high multipoles of Planck
- Constraints between Planck, Planck+ACT1800, Planck+ACT1800+SPT rather similar

0.16 ^{لوم} 0.13 7010¹⁰As 101010 ە0.98° م 0.96 0.095 ^{.0}ย.070 0.045 76 ມິ70 64 °0.9 0.8 0.15 θ^Γ0.05 0.15 ² θ 0.05 0.15

Results	0.30	
7-bin model with BAO+SNe1a+CCH(BSC), RSD, SHOES Z={0,1,2,5,100,500,1000}	0.25	
• SHOES prior favours $\beta(z) > 0$ at	0.20	
 This could be due to degeneracy 	(⊇) 0.15	
• Tightest constraints during	0.10	
epocn of large scale structure formation (5 < z <500)	0.05	
	0.00	

Results

0.025

0.020

1.1

0.9

1010¹⁰As

80

1.0

0.5

0.80

0.70

0.65

0.15

0.05

@0.10

ഗ്^{0.75}

g 8

1° 701

s 1.0

ωb

Constant Coupling with Cosmic Shear (CS), Galaxy Clustering (GC), 3x2pt $Z = \{0,1,1.5,2\}$

- Cosmic shear not as effective at constraining coupling: degeneracy in $\sigma_8 \Omega_m$ plane
- GC and 3x2pt give very tight constraints

Results

Cosmic Shear, Galaxy Clustering, 3x2pt Z={0,1,1.5,2}

3x2pt (ΛCDM)					
BOSS Fiducial GC _s (Λ CDM)					
KiDS-1000 Fiducial CS (ACDM)					•
$3x2pt$ (constant β)			-		•
BOSS GC _s (constant β)		_•-	+	-	-
KiDS-1000 Cosmic Shear (constant β)					
3x2pt	-	0 -		+	
BOSS GCs		-•-			
KiDS-1000 Cosmic Shear		_ -			-
Planck+ACT1800+SPT+BSC+CS	_	•			•
c	320	25	0.7	0.2 0.9	~· ~·
0.		ω_{h}	ω_{cdm}	n _s	

- tension in S_8 reduces from ~2.8 σ to being compatible with *Planck*
- GC and 3x2pt: constraining power comparable with CMB

• Also combined weak lensing probes with CMB+BSC: results closely in agreement with Planck,

Conclusions

- interaction between dark matter particles
- The strength of coupling is quantified by β , which can be a function of redshift
- probes
- A tomographic CDE model **loosens coupling constraints** compared to constant coupling
- With a CMB+CS tension, tension in S₈ is reduced
- dark energy models: showing promising results!

• We study a class of CDE models, where dark energy is a scalar field that mediates

• We test 3 different tomographic binning regimes, largely motivated by the choice of

• First time weak lensing and galaxy clustering used as a probe to constrain coupled

Thank you!

Questions?