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Motivation

The example of the cosmic microwave background (CMB):

Planck (2018)

|Ω!| ≲0.1 𝑅 ≈ 9000ℎ"#Mpc
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Motivation

Euclid typical size:

Planck (2018)

|Ω!| ≲0.1 𝑅 ≈ 9000ℎ"#Mpc

~30°

𝑧~2

𝑧~0.8 r~2000ℎ"#Mpc

r~3500ℎ"#Mpc
D~4000ℎ!"Mpc

D~2000ℎ!"Mpc

r~1500ℎ!"Mpc

𝐎

10 to 40 % of curvature scale
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Problem:

Formalism in curved space

The Fourier basis     must be solution of the Helmholtz equation:

FLRW metric:

where

Fourier basis in curved space ?

Matsubara (2000)
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Fourier basis in curved space ?Problem:

Formalism in curved space

The Fourier basis     must be solution of the Helmholtz equation:

FLRW metric:
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Fourier basis in curved space ?Problem:

Formalism in curved space

The Fourier basis     must be solution of the Helmholtz equation:

FLRW metric:

Temporal part Spatial part Radial part Angular part

where

Spherical Harmonics
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Redshift space distortions on linear scale: 

Galaxy clustering in configuration space

𝑂

𝜒#

𝜒$
𝜒

𝜃

𝛾#

𝛾$

where

Matsubara (2000)
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Redshift space distortions on linear scale: 

Galaxy clustering in configuration space
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Redshift space distortions on linear scale: 

Galaxy clustering in configuration space
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Redshift space distortions on linear scale: 

Galaxy clustering in configuration space

𝑂

𝜒#

𝜒$
𝜒

𝜃

𝛾#

𝛾$ Relativistic effects

Linear bias

where

Matsubara (2000)

Peculiar velocity term
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We use galaxy clustering data publicly available:

Results

Clustering ratio (CR) 𝑓𝜎9 parameter (RSD)

SDSS

- No bias
- No RSD
- No redshift evolution

It probes the shape of the 
power spectrum

It probes the 
matter 
velocity field 
through 
anisotropy of 
the galaxy 
clustering 
induced by 
redshift space 
distortions 

-> Alcock-Paczynski
Bel & Marinoni (2014)
Zennaro et al. (2018)
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Cosmological constraints on KLCDM models:

Results
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Cosmological constraints on KLCDM models:

Results

𝐻% ( > 62 km/s/Mpc at 95% C.L. )

-> completely independent from CMB
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Results
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Results

Deviance Information Criterion 
(DIC)
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Results

CR, RSD, BAO and SNIa
can be combined in a 
meaningful way 

Deviance Information Criterion 
(DIC)
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Results
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Results

there is convincing evidence, independent of CMB data, for not 
rejecting the hypothesis that the universe is spatially flat 

Ω; = 0.004 ± 0.05
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Results
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Results

r< = 144.57 ± 2.34

( Mpc )

In good agreement with constraints obtained by Chudaykin et 
al. (2021) and in good agreement with Planck (2018)
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Results

r< = 144.57 ± 2.34

( Mpc )

In good agreement with constraints obtained by Chudaykin et 
al. (2021) and in good agreement with Planck (2018)

The uncertainty depends on the BBN prior 
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Results

Tapez une équation ici.
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Results

Tapez une équation ici.
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Results

Tapez une équation ici.

Ω; = −0.023 ± 0.01

The flat LCDM model cannot be rejected, there is a too high risk 
of rejecting the wrong model
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-Clustering alone (CR+RSD+BBN) allows to set a lower 
bound on 𝐻H ( > 62 km/s/Mpc at 95% C.L. )

-CR+RSD+BBN+BAO+SNIa allow to constrain curvature 
Ω; = 0.004 ± 0.05

-According to DIC statistics the CR data do not disagree
with CMB contrary to RSD and BAO it provides Ω; =
− 0.023 ± 0.01 (cannot reject flatLCDM)

- CR+RSD+BBN+BAO+SNIa sound horizon 𝑟< = 144.57 ±
2.34 Mpc compatible with CMB 

Conclusion



6

Statistical invariance: cross-correlation between Fourier modes:

-> There is no cross-correlation, only the power spectrum  

Formalism in curved space
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Power spectrum:

Formalism in curved space

Output from the Boltzmann code CLASS
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The matter, galaxy or halo density contrast can be expanded on 
the Fourier basis:

Formalism in curved space

where                      is the radial part of the Fourier basis and for 
convenience  one can define the effective wave number 𝜈 as

The Fourier transform of the density contrast can be expressed
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Multipole expansion of the 2-point correlation function:

Galaxy clustering in configuration space

The hexadecapol is the most affected by wide angle effects
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Be D1 and D2 to data set, are those two data set in tension ? 

Deviance Information Criterion (DIC)

𝐷𝐼𝐶 𝐷 = 2𝜒!""# − 𝜒!""# where 𝜒!""# = −2lnℒ$%&

ℒIJK is the maximum likelihood 

𝜒!""# average over the posterior

Jeffrey scale:

If logLH𝐼 > 0 there is agreement else there is disagreement 

log#%𝐼 > 0.5

log#%𝐼 > 1.0

log#%𝐼 > 2.0

-> substantial

-> strong

-> decisive
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2-point correlation function density of pairs of object

Alcock-Paczynski

where

𝑂

𝜒#

𝜒$
𝜒

𝜃

𝛾#

𝛾$

R𝛾#
R𝛾$

R𝜒#
R𝜒$
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2-point correlation function density of pairs of object

Alcock-Paczynski

where


