Action Dark Energy (Marseille November 2022)

Curvature effects on the large scale structure of the universe

Centre de Physique Théorique (CPT) Julien Bel

arXiv:2206.03059, JCAP 2022

Collaborators:

Louis Perenon (*Lead*) Christian Marinoni Roy Maartens Julien Larena

- 1) Motivation for studying galaxy clustering in curved space
- 2) Fourier basis in curved space
- 3) Galaxy clustering in configuration space
- 4) Results (KLCDM)
- 5) Conclusion

Motivation

The example of the cosmic microwave background (CMB):

including uncertainties in the foreground model at $\ell \ge 30$. Note that the vertical scale changes at $\ell = 30$, where the horizontal axis switches from logarithmic to linear.

 $R \approx 9000 h^{-1} \mathrm{Mpc}$

Planck (2018)

Motivation

FLRW metric:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \gamma_{ij} dx^{i} dx^{j} = c^{2} dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$

The Fourier basis Q must be solution of the Helmholtz equation:

$$ilde{
abla}^2 \mathcal{Q} = rac{1}{\sqrt{\gamma}} \, \partial_i \left(\sqrt{\gamma} \, \gamma^{ij} \, \partial_j \, \mathcal{Q}
ight) = - ilde{k}^2 \mathcal{Q}$$

where $ilde{
abla}^2 = a_0^2 \,
abla^2, \; ilde{k} = a_0 \, k$

Matsubara (2000)

 $\mathcal{Q}(\chi, \theta, \phi) = R(\chi)Y_{lm}(\theta, \phi)$

FLRW metric:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \gamma_{ij} dx^{i} dx^{j} = c^{2} dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$

Temporal part

The Fourier basis Q must be solution of the Helmholtz equation:

$$ilde{
abla}^2 \mathcal{Q} = rac{1}{\sqrt{\gamma}} \, \partial_i \left(\sqrt{\gamma} \, \gamma^{ij} \, \partial_j \, \mathcal{Q}
ight) = - ilde{k}^2 \mathcal{Q}$$

where $ilde{
abla}^2 = a_0^2 \,
abla^2, \; ilde{k} = a_0 \, k$

Matsubara (2000)

 $\mathcal{Q}(\chi, heta, \phi) = R(\chi) Y_{lm}(heta, \phi)$

FLRW metric:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \gamma_{ij} dx^{i} dx^{j} = c^{2} dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$

Temporal part Spatial part

The Fourier basis Q must be solution of the Helmholtz equation:

$$\tilde{\nabla}^2 \mathcal{Q} = \frac{1}{\sqrt{\gamma}} \,\partial_i \left(\sqrt{\gamma} \,\gamma^{ij} \,\partial_j \,\mathcal{Q} \right) = -\tilde{k}^2 \mathcal{Q}$$

where $ilde{
abla}^2 = a_0^2 \,
abla^2, \; ilde{k} = a_0 \, k$

Matsubara (2000)

 $\mathcal{Q}(\chi, \theta, \phi) = R(\chi)Y_{lm}(\theta, \phi)$

FLRW metric:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \gamma_{ij} dx^{i} dx^{j} = c^{2} dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$
Temporal part
Spatial part
Radial part

The Fourier basis Q must be solution of the Helmholtz equation:

$$\tilde{\nabla}^2 \mathcal{Q} = \frac{1}{\sqrt{\gamma}} \,\partial_i \left(\sqrt{\gamma} \,\gamma^{ij} \,\partial_j \,\mathcal{Q} \right) = -\tilde{k}^2 \mathcal{Q}$$

where $ilde{
abla}^2 = a_0^2 \,
abla^2, \; ilde{k} = a_0 \, k$

Matsubara (2000)

$$\mathcal{Q}(\chi, \theta, \phi) = R(\chi)Y_{lm}(\theta, \phi)$$

FLRW metric:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \gamma_{ij} dx^{i} dx^{j} = c^{2} dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$
Temporal part Spatial part Radial part Angular part

The Fourier basis Q must be solution of the Helmholtz equation:

$$\tilde{\nabla}^2 \mathcal{Q} = \frac{1}{\sqrt{\gamma}} \,\partial_i \left(\sqrt{\gamma} \,\gamma^{ij} \,\partial_j \,\mathcal{Q} \right) = -\tilde{k}^2 \mathcal{Q}$$

where $ilde{
abla}^2 = a_0^2 \,
abla^2, \; ilde{k} = a_0 \, k$

Matsubara (2000)

$$\mathcal{Q}(\chi, \theta, \phi) = R(\chi)Y_{lm}(\theta, \phi)$$

FLRW metric:

$$ds^{2} = c^{2} dt^{2} - a^{2}(t) \gamma_{ij} dx^{i} dx^{j} = c^{2} dt^{2} - a^{2}(t) \left[d\chi^{2} + S_{K}^{2}(\chi) \left(d\theta^{2} + \sin^{2} \theta d\phi^{2} \right) \right]$$
Temporal part Spatial part Radial part Angular part

The Fourier basis Q must be solution of the Helmholtz equation:

$$\tilde{\nabla}^2 \mathcal{Q} = \frac{1}{\sqrt{\gamma}} \,\partial_i \left(\sqrt{\gamma} \,\gamma^{ij} \,\partial_j \,\mathcal{Q} \right) = -\tilde{k}^2 \mathcal{Q}$$

where $ilde{
abla}^2 = a_0^2 \,
abla^2, \; ilde{k} = a_0 \, k$

$$\mathcal{Q}(\chi, heta,\phi)=R(\chi)rac{Y_{lm}(heta,\phi)}{Y_{lm}(heta,\phi)}$$
 Spherical Harmonics

Redshift space distortions on linear scale:

.

Redshift space distortions on linear scale:

$$\delta_{g}^{s}(z, \boldsymbol{r}) = b(z)\delta_{m}(z, \boldsymbol{r}) - \frac{(1+z)}{H(z)}\frac{\partial}{\partial r}[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]$$
Linear bias
$$-\frac{(1+z)}{H(z)}\alpha(z)[\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}] + [5s(z) - 2]\kappa(z, \boldsymbol{r}) + \delta_{\Phi}(z, \boldsymbol{r})$$

$$\chi_{1}$$

$$\chi_{2}$$
Matsubara (2000)
$$\xi_{g}^{s}(\boldsymbol{\chi}_{1}, \boldsymbol{\chi}_{2}) = b_{1}b_{2}D_{1}D_{2}\sum_{n,l}c_{l}^{(n)}(\chi_{1}, \chi_{2}, \theta)\Xi_{l}^{(n)}(\chi)$$
where
$$\Xi_{l}^{(n)}(\chi) = 4\pi(-1)^{n}\int d\nu \frac{\nu^{2}}{(\nu^{2} - 4K)^{n}}\mathcal{S}(\nu)X_{l}^{(K)}(\nu, \chi)$$

$$\int_{0}^{\theta}C_{K}(\chi) = C_{K}(\chi_{1})C_{K}(\chi_{2}) + KS_{K}(\chi_{1})S_{K}(\chi_{2})\cos\theta$$
5

Redshift space distortions on linear scale:

Peculiar velocity term $\delta_{\rm g}^{s}(z, \boldsymbol{r}) = \boldsymbol{b}(z)\delta_{\rm m}(z, \boldsymbol{r}) - \frac{(1+z)}{H(z)} \frac{\partial}{\partial r} [\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]$ Linear bias Linear bias $-\frac{(1+z)}{H(z)}\alpha(z)\left[\boldsymbol{v}(z,\boldsymbol{r})\cdot\hat{\boldsymbol{r}}\right]+\left[5s(z)-2\right]\kappa(z,\boldsymbol{r})+\delta_{\Phi}(z,\boldsymbol{r})$ γ₂ χ Matsubara (2000) γ_1 χ_2 $\xi_{\rm g}^{s}(\boldsymbol{\chi}_{1}, \boldsymbol{\chi}_{2}) = b_{1}b_{2}D_{1}D_{2}\sum c_{l}^{(n)}(\chi_{1}, \chi_{2}, \theta) \,\Xi_{l}^{(n)}(\chi)$ χ_1 n.lwhere $\Xi_l^{(n)}(\chi) = 4\pi (-1)^n \int d\nu \, \frac{\nu^2}{(\nu^2 - 4K)^n} \mathcal{S}(\nu) X_l^{(K)}(\nu, \chi)$ θ $C_K(\chi) = C_K(\chi_1)C_K(\chi_2) + KS_K(\chi_1)S_K(\chi_2)\cos\theta$ 5

Redshift space distortions on linear scale:

Peculiar velocity term $\delta_{
m g}^{s}(z, \boldsymbol{r}) = \boldsymbol{b}(z)\delta_{
m m}(z, \boldsymbol{r}) - rac{(1+z)}{H(z)} rac{\partial}{\partial r} [\boldsymbol{v}(z, \boldsymbol{r}) \cdot \hat{\boldsymbol{r}}]$ Linear bias $\frac{(1+z)}{H(z)}\alpha(z)\left[\boldsymbol{v}(z,\boldsymbol{r})\cdot\hat{\boldsymbol{r}}\right] + \left[5s(z)-2\right]\kappa(z,\boldsymbol{r}) + \delta_{\Phi}(z,\boldsymbol{r})$ Relativistic effects γ_2 χ Matsubara (2000) γ_1 χ_2 $\xi_{\rm g}^{s}(\boldsymbol{\chi}_{1}, \boldsymbol{\chi}_{2}) = b_{1}b_{2}D_{1}D_{2}\sum c_{l}^{(n)}(\chi_{1}, \chi_{2}, \theta) \,\Xi_{l}^{(n)}(\chi)$ χ_1 n.lwhere $\Xi_l^{(n)}(\chi) = 4\pi (-1)^n \int d\nu \, \frac{\nu^2}{(\nu^2 - 4K)^n} \mathcal{S}(\nu) X_l^{(K)}(\nu, \chi)$ θ $C_K(\chi) = C_K(\chi_1)C_K(\chi_2) + KS_K(\chi_1)S_K(\chi_2)\cos\theta$

Results

We use galaxy clustering data publicly available:

Clustering ratio (CR)

$$\eta_R(r) \equiv rac{\xi_R^{(0)}(r)}{\sigma_R^2}$$

- No bias
- No RSD
- No redshift evolution

It probes the shape of the power spectrum

Data	set	$z_{ m min}$	$z_{ m max}$	η_R	Ref.
	DR7	0.15	0.43	0.096 ± 0.007	[44, 61]
SDSS	DR12	0.30	0.53	0.094 ± 0.006	[44, 62]
	DR12	0.53	0.67	0.105 ± 0.011	[44, 62]

Bel & Marinoni (2014) Zennaro et al. (2018)

$f\sigma_8$ parameter (RSD)

Data ant

It probes the	6 1
matter	:
velocity field	
through	SI SI H
anisotropy of	H H H
the galaxy	I I I
clustering	I I I
induced by	
redshift space	V V
distortions	

Data set	2	<i>J0</i> 8	neierence
2MTF	0.001	0.505 ± 0.085	[28]
6 dFGS + SNIa	0.02	0.428 ± 0.0465	[29]
IRAS+SNIa	0.02	0.398 ± 0.065	[30, 31]
2MASS	0.02	0.314 ± 0.048	[31, 32]
SDSS	0.10	0.376 ± 0.038	[33]
SDSS-MGS	0.15	0.490 ± 0.145	[34]
2 dFGRS	0.17	0.510 ± 0.060	[35]
GAMA	0.18	0.360 ± 0.090	[36]
GAMA	0.38	0.440 ± 0.060	[36]
SDSS-LRG-200	0.25	0.3512 ± 0.0583	[37]
SDSS-LRG-200	0.37	0.4602 ± 0.0378	[37]
BOSS DR12	0.31	0.469 ± 0.098	[38]
BOSS DR12	0.36	0.474 ± 0.097	[38]
BOSS DR12	0.40	0.473 ± 0.086	[38]
BOSS DR12	0.44	0.481 ± 0.076	[38]
BOSS DR12	0.48	0.482 ± 0.067	[38]
BOSS DR12	0.52	0.488 ± 0.065	[38]
BOSS DR12	0.56	0.482 ± 0.067	[38]
BOSS DR12	0.59	0.481 ± 0.066	[38]
BOSS DR12	0.64	0.486 ± 0.070	[38]
WiggleZ	0.44	0.413 ± 0.080	[39]
WiggleZ	0.60	0.390 ± 0.063	[39]
WiggleZ	0.73	0.437 ± 0.072	[39]
Vipers PDR-2	0.60	0.550 ± 0.120	[40, 41]
Vipers PDR-2	0.86	0.400 ± 0.110	[40, 41]
FastSound	1.40	0.482 ± 0.116	[42]
SDSS-IV	0.978	0.379 ± 0.176	[43]
SDSS-IV	1.23	0.385 ± 0.099	[43]
SDSS-IV	1.526	0.342 ± 0.070	[43]
SDSS-IV	1.944	0.364 ± 0.106	[43]

-> Alcock-Paczynski

Results

Cosmological constraints on KLCDM models:

Parameter	Prior
$\Omega_{\mathrm{b},0}h^2$	$[0, \ 100]$
$\Omega_{\mathrm{c},0}h^2$	$[0, \ 100]$
H_0	[40,100]
au	$[0,\ 0.2]$
$\ln(10^{10}A_{ m s})$	$[0, \ 100]$
$n_{ m s}$	[0.9,1]
$\Omega_{K,0}$	[-0.2,0.6]
$\Omega_{\mathrm{b},0}h^2$	$\mathcal{N}\left(0.0222, 0.0005^2 ight)$
$\sigma_{8,0}$	$[0.6,\ 1]$
$\Omega_{\mathrm{m,0}}$	$[0,\ 1]$

Results

Cosmological constraints on KLCDM models:

Parameter	Prior	
$\Omega_{\mathrm{b},0}h^2$	$[0, \ 100]$	
$\Omega_{\mathrm{c},0}h^2$	$[0, \ 100]$	
H_0	[40,100]	
au	$[0,\ 0.2]$	
$\ln(10^{10}A_{ m s})$	$[0, \ 100]$	
$n_{ m s}$	$[0.9,\ 1]$	
$\Omega_{K,0}$	[-0.2,0.6]	
$\Omega_{\mathrm{b},0}h^2$	$\mathcal{N}\left(0.0222, 0.0005^2 ight)$	
$\sigma_{8,0}$	$[0.6,\ 1]$	
$\Omega_{\mathrm{m,0}}$	[0, 1]	

H₀ (> 62 km/s/Mpc at 95% C.L.)-> completely independent from CMB

Conclusion

-Clustering alone (CR+RSD+BBN) allows to set a lower bound on H_0 (> 62 km/s/Mpc at 95% C.L.)

-CR+RSD+BBN+BAO+SNIa allow to constrain curvature $\Omega_K = 0.004 \pm 0.05$

-According to DIC statistics the CR data do not disagree with CMB contrary to RSD and BAO it provides $\Omega_K =$ -0.023 ± 0.01 (cannot reject flatLCDM)

- CR+RSD+BBN+BAO+SNIa sound horizon $r_d = 144.57 \pm 2.34$ Mpc compatible with CMB

Formalism in curved space

Statistical invariance: cross-correlation between Fourier modes:

$$\left\langle \delta_{lm}(\nu)\delta_{l'm'}^{*}(\nu')\right\rangle = \delta_{ll'}\,\delta_{mm'}\,\frac{\mathcal{S}(\nu)}{\nu^2} \begin{cases} \delta^{\mathrm{D}}(\nu-\nu') & \text{if } K \leq 0, \\ \\ \delta_{\nu\nu'} & \text{if } K = 1. \end{cases}$$

-> There is no cross-correlation, only the power spectrum $\mathcal{S}(\nu)$

$$\nu S(\nu) = \frac{k}{a_0^2} P(k) \text{ where } k = \frac{\tilde{k}}{a_0} = \frac{\sqrt{\nu^2 - K}}{a_0} \text{ and } \tilde{k} \chi = k r.$$

Formalism in curved space

Formalism in curved space

The matter, galaxy or halo density contrast can be expanded on the Fourier basis:

$$\delta(\chi, \theta, \phi) = 4\pi \int_0^\infty d\nu \, \nu^2 \sum_{l=0}^\infty \sum_{m=-l}^l \delta_{lm}(\nu) \, \hat{X}_l^{(K)}(\nu, \chi) \, Y_{lm}(\theta, \phi),$$

where $\hat{X}_{l}^{(K)}(\nu, \chi)$ is the radial part of the Fourier basis and for convenience one can define the effective wave number ν as

$$\tilde{k}^2 = \nu^2 - K$$

The Fourier transform of the density contrast can be expressed

$$\delta_{lm}(\nu) = \frac{1}{2\pi^2} \int \mathrm{d}^2 \Omega \, \mathrm{d}\chi \, S_K^2(\chi) \, \delta(\chi,\theta,\phi) \hat{X}_l^{(K)}(\nu,\chi) Y_{lm}^*(\theta,\phi)$$

Multipole expansion of the 2-point correlation function:

The hexadecapol is the most affected by wide angle effects

Deviance Information Criterion (DIC)

Be D1 and D2 to data set, are those two data set in tension ?

$$DIC(D) = 2\overline{\chi_{eff}^2} - \chi_{eff}^2$$
 where $\chi_{eff}^2 = -2\ln\mathcal{L}_{max}$
 \mathcal{L}_{max} is the maximum likelihood
 $\overline{\chi_{eff}^2}$ average over the posterior
 $I(D_1, D_2) = e^{-\mathcal{F}(D_1, D_2)/2}$ where $\mathcal{F}(D_1, D_2) = DIC(D_1 \cup D_2) - DIC(D_1) - DIC(D_2)$

If $\log_{10} I > 0$ there is agreement else there is disagreement Jeffrey scale:

$ \log_{10}I > 0.5$	-> substantial
$ \log_{10} I > 1.0$	-> strong
$ \log_{10} I > 2.0$	-> decisive

Alcock-Paczynski

2-point correlation function density of pairs of object

Alcock-Paczynski

Figure 12. Top: AP effect on the monopole (A.16) (left) and quadrupole (A.18) (right). Solid black line shows the true distorted multipoles. Red long-dashed line shows the leading (first) contribution and blue short-dashed line is the correction. Green dot-dashed line shows the multipole without AP effect. Fiducial model: $\Omega_{m,0} = 0.37$, $\Omega_{K,0} = 0$; true model: $\Omega_{K,0} = -0.1$, $\Omega_{m,0} = 0.32$. Bottom: Fractional difference relative to true distorted multipoles.