Stress test for models willing to solve the Hubble tension

A. Blanchard, J.-Y. Héloret, B.Lamine, S. Illić, I.Tutusaus

Marseille, November 18th, 2022

Successes of ΛCDM :

 \rightarrow predictive

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Successes of ΛCDM :

 $\rightarrow \text{ predictive}$

 \rightarrow accurate parameters determination \sim % precision.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Successes of ΛCDM :

 \rightarrow predictive

ightarrow accurate parameters determination \sim % precision.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Tensions.

The amplitude of matter fluctuations tension, i.e. S_8 tension.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ▲ ●

• weak lensing

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$

- weak lensing
- RSD (redshift space distorsion) $\rightarrow f\sigma_8$

э

Recipe:

・ロト ・ 聞 ト ・ 国 ト ・ 国 ・ のへぐ

Recipe:

• use only "local" data i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

Recipe:

• use only "local" data i.e. $z \ll 1000$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

• work in the ACDM framework.

Recipe:

• use only "local" data i.e. $z \ll 1000$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- work in the ACDM framework.
- RSD

Recipe:

• use only "local" data i.e. z << 1000

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+,

Recipe:

• use only "local" data i.e. $z \ll 1000$

<ロ> (四) (四) (三) (三) (三) (三)

- work in the ACDM framework.
- RSD
- SNIa diagram Pantheon+,
- WL from DES 3yr

RSD from surveys

Survey	\mathbf{z}	$f\sigma_8$	Refs
2MFT	0.001	0.51 + / -0.085	[19]
6dFGS	0.067	0.423 + / -0.055	[20]
SDSS DR13	0.1	0.48 + / -0.16	[21]
2dFGRS	0.17	0.51 + / -0.06	[22]
GAMA	0.18	0.36 + / - 0.09	[23]
WiggleZ	0.22	0.42 + / -0.07	[24]
SDSS LRG60	0.25	0.35 + / - 0.06	[25]
BOSS LOW Z	0.32	0.48 + / - 0.1	[26]
GAMA	0.36	0.44 + / - 0.06	[23]
SDSS LRG 200	0.37	0.46 + / - 0.04	[25]
WiggleZ	0.41	0.45 + / -0.04	[24]
CMASS BOSS	0.57	0.453 + / -0.02	[27]
WiggleZ	0.6	0.43 + / -0.04	[24]
VIPERS	0.6	0.48 + / -0.12	[28]
SDSS IV	0.69	0.447 + / -0.039	[29]
VIPERS	0.76	0.44 + / -0.04	[30]
SDSS IV	0.77	0.432 + / -0.038	[31]
WiggleZ	0.78	0.38 + / -0.04	[24]
SDSS IV	0.85	0.52 + / -0.10	[32]
VIPERS	0.86	0.48 + / -0.10	[28]
SDSS IV	0.978	0.379 + / -0.176	[31]
SDSS IV	1.23	0.385 + / - 0.1	[31]
Fastsound	1.4	0.494 + / -0.123	[33]
SDSS IV	1.52	0.426 + / -0.077	[34]
SDSS IV	1.944	0.364 + / -0.106	[31]

RSD from surveys: constraints

・ロト ・聞と ・ヨト ・ヨト

æ

RSD from surveys: constraints

・ロ・ ・ 日・ ・ 川 ・

3 x 3

Not surprisingly strong degeneracy

RSD from surveys: constraints

・ロト ・回ト ・目下

3 🖒 3

Not surprisingly strong degeneracy Need to combine with other low - z data

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}} = 0.338 \pm 0.018$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}} = 0.338 \pm 0.018$

DES 3yr

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}} = 0.338 \pm 0.018$

DES 3yr

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─

э

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}} = 0.338 \pm 0.018$

DES 3yr

<ロ> (四) (四) (三) (三) (三) (三)

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}} = 0.338 \pm 0.018$

DES 3yr

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Pantheon+: SNIa Hubble diagram (Brout et al., 2022), for ACDM):

 $\Omega_{\textit{M}} = 0.338 \pm 0.018$

Marseille 18/11/2022

≣ %) ९।

Simple:

$$\nu = \frac{O_1 - O_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ● ▲ ●

Simple:

$$\nu = \frac{O_1 - O_2}{\sqrt{\sigma_1^2 + \sigma_2^2}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Not necessarily measuring the full tension...

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

Lemos et al. (2021)

▲日 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

Lemos et al. (2021)

CMB with SH0ES

(a)

Э

æ

CMB with SH0ES

▲□▶ ▲□▶ ▲□▶

포 제 표

$\Omega_{\textit{M}}=0.327\pm0.013$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$\Omega_{\textit{M}}=0.327\pm0.013$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

using SH0ES: $H_0 = 73.3 \pm 1.04 \text{ km/s/Mpc}$

$$\Omega_M = 0.327 \pm 0.013$$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc we can infer :

 $\omega_{\textit{M}}=0.1753\pm0.0069$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\Omega_M = 0.327 \pm 0.013$$

using SH0ES: $H_0 = 73.3 \pm 1.04$ km/s/Mpc we can infer :

 $\omega_{\textit{M}}=0.1753\pm0.0069$

compared to Planck (+ext):

$$\omega_M = 0.1425 \pm 0.0012$$

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

4.7 σ away for ΛCDM

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let's take the \sim 200 models summarized in Di Valentino et al. (2021) In the realm of the Hubble tension – a review of solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶

• ΛCDM is a 40-years old theory that matches remarkably well data at cosmological scales.

<ロ> (四) (四) (三) (三) (三) (三)

• ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.

• Tensions are a serious concern anyway.

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!
- \bullet Low redhsift universe seems to have $\Omega_M \sim 0.32$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!
- \bullet Low redhsift universe seems to have $\Omega_M \sim 0.32$
- ω_M provides a metric for extensions likely to be more discriminant.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ACDM is a 40-years old theory that matches remarkably well data at cosmological scales.
- Tensions are a serious concern anyway.
- *S*₈ tension seems not strong enough, i.e. no tension!
- \bullet Low redhsift universe seems to have $\Omega_M\sim 0.32$
- ω_M provides a metric for extensions likely to be more discriminant.
- This would mean for $H_0 \sim 73$ in serious conflict with Planck.

Thank You