00000 00000 00000 0000	
	000

Towards new approaches to cluster detection for cosmology

Vincent Reverdy

[vincent.reverdy@lapp.in2p3.fr]

Researcher in Computer Science and Numerical Cosmology CNRS - French National Centre for Scientific Research LAPP - Laboratoire d'Annecy de Physique des Particules

November 18th, 2022

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
Table of conten	ts			

Galaxy clusters

2 Clusters and computers

3 Game trees

MCTS and AlphaZero

5 A clustering game

6 Conclusions

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

• • = • • = •

Galaxy clusters	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Galaxy clusters					

Galaxy clusters

Clusters and computers

Game trees

- MCTS and AlphaZero
- A clustering game

Conclusions

16 A 🗎

Galaxy clusters	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Halos in simulations					

◆□ > ◆□ > ◆ □ > ◆ □ > ↓ □ > ◆ □ >

Holos in sim	ulations				
0000	000000	00000	0000	0000	
Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Galaxy clusters	in observations				

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

Galaxy clusters in observations	
Galaxy clusters Clusters and computers Game trees MC IS and Alpha∠ero A clustering game OO●O 000000 00000 00000 00000	000

Observational cosmology using galaxy clusters

Galaxy clusters as building blocks of cosmological analyses.

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

Galaxy clusters in observations	
Galaxy clusters Clusters and computers Game trees MC IS and Alpha∠ero A clustering game OO●O 000000 00000 00000 00000	000

Observational cosmology using galaxy clusters

Galaxy clusters as building blocks of cosmological analyses.

Main problem of this presentation in the context of LSST

How to detect galaxy clusters?

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

Galaxy clusters	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Galaxy cluster of	detection				

Clusters in simulations

Input: particles

Simulation cluster detectors

- Spherical Over Density (SOD)
- Friends-of-Friends (FoF)
-

Clusters in observations

Input: sources/galaxies

Observational cluster detectors for LSST

- redMaPPer (Rykoff et al. 2013)
- WaZP (Benoist 2014)
- ...

イロト イボト イヨト イヨト

3

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Galaxy cluster	detection				

Improving cluster detection for observational cosmology

Can we use machine-learning to improve cluster detection for observational cosmology?

・ロット (日本) (日本) (日本)

3

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
	•00000			
Clusters and co	mputers			

Galaxy clusters

Clusters and computers

Game trees

- MCTS and AlphaZero
- A clustering game

Conclusions

→ < ∃ →</p>

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions		
0000	00000	00000	0000	0000	000		
Using deep neural networks to detect galaxy clusters							

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

.

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deep	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

• • = • • = •

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deen	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

Scientific problems

• • = • • = •

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deen	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

Scientific problems

 Training phase: implicit dependency on cluster detection algorithm used in simulations (FoF)

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deen	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

Scientific problems

- Training phase: implicit dependency on cluster detection algorithm used in simulations (FoF)
- Performance depends on image rescaling / color treatment

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deep r	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

Scientific problems

- Training phase: implicit dependency on cluster detection algorithm used in simulations (FoF)
- Performance depends on image rescaling / color treatment
- Blackbox effect: hard to understand, interpret, and adjust performance

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deep r	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

Scientific problems

- Training phase: implicit dependency on cluster detection algorithm used in simulations (FoF)
- Performance depends on image rescaling / color treatment
- Blackbox effect: hard to understand, interpret, and adjust performance
- Risk of circular dependency: may just learn how to invert semi-analytical prescription

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
Using deep	neural networks to de	etect galaxy clu	isters		

- Ultra large images
- More than 3 colors

Scientific problems

- Training phase: implicit dependency on cluster detection algorithm used in simulations (FoF)
- Performance depends on image rescaling / color treatment
- Blackbox effect: hard to understand, interpret, and adjust performance
- Risk of circular dependency: may just learn how to invert semi-analytical prescription

Direction of investigation

Physics-guided machine-learning?

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
	000000			
A problem of de	efinition			

The fundamental problem of clusters

- No universal definition: many definitions and parameterization accross simulations and observations
- Computers require definitions: implicit or explicit parameterization in algorithms
- Algorithms \Leftrightarrow Definitions

.

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
	00000			
A problem of de	efinition			

The fundamental problem of clusters

- No universal definition: many definitions and parameterization accross simulations and observations
- Computers require definitions: implicit or explicit parameterization in algorithms
- Algorithms \Leftrightarrow Definitions

Physics-based definitions

- Physical distance
- Gravitational potential
- Virialized structures
- ...

A B K A B K

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	00000	00000	0000	0000	000
A problem of de	efinition				

The fundamental problem of clusters

- No universal definition: many definitions and parameterization accross simulations and observations
- Computers require definitions: implicit or explicit parameterization in algorithms
- Algorithms \Leftrightarrow Definitions

Physics-based definitions

- Physical distance
- Gravitational potential
- Virialized structures
- ...

Example of FoF: linking-length

Cluster dendrograms

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

・ロット (日本) (日本)

3

A universal representation

- Traditional galaxy cluster finders \Rightarrow 3-level trees (root/clusters/sources)
- With subhalo finders \Rightarrow 4-level trees (root/clusters/subclusters/sources)
- Hierarchical finders \Rightarrow N-level trees (root/supersuperclusters/superclusters/clusters/.../sources)

ヘロト ヘポト ヘヨト ヘヨト

0000		00000	0000	0000	000
Graph as a num	nerical representatior	of the cosmic	web		

◆□ > ◆□ > ◆ 三 > ◆ 三 > ○ Q @

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

0000	000000	00000	0000	0000	000
Graph as a num	erical representation	of the cosmic	web		

A B K A B K

Representing the cosmic web as a graph

- Vertices: particles, sources
- Edges: physical parameterization (physical distance...)
- Going beyond: fuzzy graphs to take into account error bars

- 32

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions		
0000	00000	00000	0000	0000	000		
A computer	science perspective	on galaxy clust	ering: graphs and tr	ees			
Reframing of the galaxy clustering problem							
• Cosmic web \Leftrightarrow Graph							

• Galaxy clustering \Leftrightarrow Trees

 Galaxy clusters 0000
 Clusters and computers 0000
 Came trees 0000
 MCTS and AlphaZero 0000
 A clustering game 0000
 Conclusions 0000

 A computer science perspective on galaxy clustering: graphs and trees

Reframing of the galaxy clustering problem

- $\blacksquare Cosmic web \Leftrightarrow Graph$
- Galaxy clustering \Leftrightarrow Trees

Computer science perspective

 $\mathsf{Galaxy}\ \mathsf{clustering}\ \mathsf{problem}\ \Leftrightarrow\ \mathsf{Computing}\ \mathsf{Trees}\ \mathsf{on}\ \mathsf{Graphs}$

3

A computer science perspective on galaxy clustering: graphs and trees							
	000000						
Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions		

Reframing of the galaxy clustering problem

- $\blacksquare Cosmic web \Leftrightarrow Graph$
- Galaxy clustering \Leftrightarrow Trees

Computer science perspective

 $\mathsf{Galaxy}\ \mathsf{clustering}\ \mathsf{problem}\ \Leftrightarrow\ \mathsf{Computing}\ \mathsf{Trees}\ \mathsf{on}\ \mathsf{Graphs}$

Discrete vs continuous mathematics

- \blacksquare Comparison of galaxy clustering algorithms \Rightarrow comparison of trees
- Computer science related problem: tree metric and distances

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

э

 Galaxy clusters 0000
 Clusters and computers 0000
 Came trees 0000
 MCTS and AlphaZero 0000
 A clustering game 0000
 Conclusions 000

 A computer science perspective on galaxy clustering: graphs and trees

Reframing of the galaxy clustering problem

- $\blacksquare Cosmic web \Leftrightarrow Graph$
- Galaxy clustering ⇔ Trees

Computer science perspective

 $\mathsf{Galaxy\ clustering\ problem} \Leftrightarrow \mathsf{Computing\ Trees\ on\ Graphs}$

Discrete vs continuous mathematics

- \blacksquare Comparison of galaxy clustering algorithms \Rightarrow comparison of trees
- Computer science related problem: tree metric and distances

Research direction

Playing games on the cosmic web: computing galaxy clustering trees on the cosmic web graph

- Well-framed computer science problem
- Bridge between numerical cosmology, computer science, and discrete mathematics
- Computer science tools available

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Game trees					

- Galaxy clusters
- Clusters and computers

- MCTS and AlphaZero
- A clustering game

Conclusions

16 A 🗎

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions		
		0000					
Game trees: starting with Tic-Tac-Toe							

A universal way to represent sequential *N*-player(s) games with perfect information.

イロト イポト イヨト イヨト

э.

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions			
		0000						
Game trees: sta	Game trees: starting with Tic-Tac-Toe							

#

Game trees

A universal way to represent sequential *N*-player(s) games with perfect information.

イロト イポト イヨト イヨト

э.

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Game trees: sta	arting with Tic-Tac-T	oe			

A universal way to represent sequential *N*-player(s) games with perfect information.

イロト イヨト イヨト

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

э.

Game trees: starting with Tic-Tac-Toe							
0000	000000	00000	0000	0000	000		
	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions		

A universal way to represent sequential *N*-player(s) games with perfect information.

・ロット (日本) (日本)

э

Game trees: starting with Tic-Tac-Toe							
0000	000000	0000	0000	0000	000		
	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions		

A universal way to represent sequential *N*-player(s) games with perfect information.

・ロット (日本) (日本) (日本)

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

э
Game trees: s	tarting with Tic-Ta	ac-Toe			
0000	000000	00000	0000	0000	000
	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions

A universal way to represent sequential *N*-player(s) games with perfect information.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э.

Game trees: sta	rting with Tic-Tac-To	he			
0000	000000	0000	0000	0000	000
	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions

A universal way to represent sequential *N*-player(s) games with perfect information.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Game trees: sta	rting with Tic-Tac-To	he			
0000	000000	0000	0000	0000	000
	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions

A universal way to represent sequential *N*-player(s) games with perfect information.

・ロット (日本) (日本)

	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	0000	0000	0000	000
Game trees:	starting with Tic-Ta	ac-Toe			

A universal way to represent sequential *N*-player(s) games with perfect information.

• • = • • = •

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
		00000			
Game complexi	ty				

Tic-Tac-Toe

- Board size $\Rightarrow 3^2 = 9$
- Average game length $\Rightarrow 9$
- \blacksquare Average branching factor $\Rightarrow 4$
- Number of games $\Rightarrow 255168$

Chess

- Board size $\Rightarrow 8^2 = 64$
- \blacksquare Average game length $\Rightarrow 70$
- Average branching factor $\Rightarrow 35$
- Complexity $\Rightarrow 35^{70} \approx 10^{64}$

Go

- Board size $\Rightarrow 19^2 = 361$
- Average game length $\Rightarrow 150$
- Average branching factor $\Rightarrow 250$
- Complexity $\Rightarrow 250^{150} \approx 10^{360}$

・ロト ・ 同ト ・ ヨト ・ ヨト

	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
		00000			
Playing ches	s algorithmically				

Brute-forcing

Game tree still tractable: average depth d = 70, average branching factor b = 35

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

CC0 1.0 Universal - Public Domain Dedication

・ロト ・ 同ト ・ ヨト ・ ヨト

	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
The problem wi	th the game of Go				

Intractability

Go's game tree average depth d = 150, average branching factor b = 250

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

イロン イヨン イヨン ・

э.

	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
		00000			
The problem	with the game of G	0			

Intractability

Go's game tree average depth d = 150, average branching factor b = 250

Deepmind's AlphaGo/AlphaZero

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
		0000		
MCTS and Alp	haZero			

- Galaxy clusters
- Clusters and computers
- Game trees
- MCTS and AlphaZero
- A clustering game
- Conclusions

• • = •

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo	p-Tree-Search (MCTS	S) overview			

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-T	ree-Search (MCTS) o	overview			

Select a leaf node.

(ロ) (四) (E) (E) (E) (E)

Select a leaf node.

Expansion

Create one or more children nodes and select one of them.

イロト イボト イヨト イヨト

3

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-T	ree-Search (MCTS) o	overview			

Select a leaf node.

Expansion

Create one or more children nodes and select one of them.

Simulation

Complete a full random playout from the selected child.

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ - つへで

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions			
0000	000000	00000	0000	0000	000			
Monte-Carlo-Tree-Search (MCTS) overview								

Select a leaf node.

Expansion

Create one or more children nodes and select one of them.

Simulation

Complete a full random playout from the selected child.

Backpropagation

Backpropagate the result of the simulation back to the root.

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ - つへで

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions		
0000	000000	00000	0000	0000	000		
Monte-Carlo-Tree-Search (MCTS) overview							

Select a leaf node.

Expansion

Create one or more children nodes and select one of them.

Simulation

Complete a full random playout from the selected child.

Backpropagation

Backpropagate the result of the simulation back to the root.

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ - つへで

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-Tr	ee-Search (MCTS) re	efinements			

- \blacksquare To get a distribution of results, N_s simulations can be performed at each step
- Simulated playouts can be done in a better way than using random moves

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-Tr	ee-Search (MCTS) re	efinements			

- \blacksquare To get a distribution of results, N_s simulations can be performed at each step
- Simulated playouts can be done in a better way than using random moves

Selection: exploitation vs exploration

Example of the UCT (Upper Confidence Bound 1 applied to Trees) policy:

$$\max_{x} \left(\frac{w_{i}\left(x\right)}{n_{i}\left(x\right)} + c \sqrt{\frac{\log\left(N_{i}\left(x\right)\right)}{n_{i}\left(x\right)}} \right)$$

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-Tr	ee-Search (MCTS) re	efinements			

- \blacksquare To get a distribution of results, N_s simulations can be performed at each step
- Simulated playouts can be done in a better way than using random moves

Selection: exploitation vs exploration

Example of the UCT (Upper Confidence Bound 1 applied to Trees) policy:

$$\max_{x} \left(\frac{w_{i}\left(x\right)}{n_{i}\left(x\right)} + c \sqrt{\frac{\log\left(N_{i}\left(x\right)\right)}{n_{i}\left(x\right)}} \right)$$

• $w_i \Rightarrow$ number of wins for the node x after the *i*-th move

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-Tr	ee-Search (MCTS) re	efinements			

- \blacksquare To get a distribution of results, N_s simulations can be performed at each step
- Simulated playouts can be done in a better way than using random moves

Selection: exploitation vs exploration

Example of the UCT (Upper Confidence Bound 1 applied to Trees) policy:

$$\max_{x} \left(\frac{w_{i}\left(x\right)}{n_{i}\left(x\right)} + c \sqrt{\frac{\log\left(N_{i}\left(x\right)\right)}{n_{i}\left(x\right)}} \right)$$

- $w_i \Rightarrow$ number of wins for the node x after the i-th move
- $n_i \Rightarrow$ number of simulations for the node x after the i-th move

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-Tr	ee-Search (MCTS) re	efinements			

- \blacksquare To get a distribution of results, N_s simulations can be performed at each step
- Simulated playouts can be done in a better way than using random moves

Selection: exploitation vs exploration

Example of the UCT (Upper Confidence Bound 1 applied to Trees) policy:

$$\max_{x} \left(\frac{w_{i}\left(x\right)}{n_{i}\left(x\right)} + c \sqrt{\frac{\log\left(N_{i}\left(x\right)\right)}{n_{i}\left(x\right)}} \right)$$

- $w_i \Rightarrow$ number of wins for the node x after the i-th move
- $n_i \Rightarrow$ number of simulations for the node x after the *i*-th move
- $N_i \Rightarrow$ total number of simulations for the parent node of x after the *i*-th move

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Monte-Carlo-Tr	ee-Search (MCTS) re				

- \blacksquare To get a distribution of results, N_s simulations can be performed at each step
- Simulated playouts can be done in a better way than using random moves

Selection: exploitation vs exploration

Example of the UCT (Upper Confidence Bound 1 applied to Trees) policy:

$$\max_{x} \left(\frac{w_{i}\left(x\right)}{n_{i}\left(x\right)} + c \sqrt{\frac{\log\left(N_{i}\left(x\right)\right)}{n_{i}\left(x\right)}} \right)$$

- $w_i \Rightarrow$ number of wins for the node x after the i-th move
- $n_i \Rightarrow$ number of simulations for the node x after the *i*-th move
- $N_i \Rightarrow$ total number of simulations for the parent node of x after the *i*-th move
- $c \Rightarrow$ exploration coefficient ($c = \sqrt{2}$)

Galaxy clusters 0000	Clusters and computers	Game trees 00000	MCTS and AlphaZero 000●	A clustering game	Conclusions 000			
AlphaZero = Monte-Carlo-Tree-Search + Deep Neural Networks								
Monte-Ca	rlo-Tree-Search (MCTS)							
Selection	tion		Simulation					

Backpropagation

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

Expansion

イロン イロン イヨン イヨン

Ξ.

AlphaZero = Monte-Carlo-Tree-Search + Deep Neural Networks	Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions	
AlphaZero = Monte-Carlo-Tree-Search + Deep Neural Networks	0000	000000	00000	0000	0000	000	
	AlphaZero = Monte-Carlo-Tree-Search + Deep Neural Networks						

Monte-Carlo-Tree-Search (MCTS)	
Selection	Simulation
Expansion	 Backpropagation

Policy deep neural network

- Input: *s*, the current state of the board (+ optionally previous states)
- Output: *p*, to select the most probable/promising moves
- General idea: reduce the breadth of the tree search

- (E)

► 4 3 ×

AlphaZero = Monte-Carlo-Tree-Search + Deep Neural Networks						
0000	000000	00000	0000	0000	000	
Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions	

Monte-Carlo-Tree-Search (MCTS)	
 Selection 	Simulation
Expansion	 Backpropagation

Policy deep neural network

- Input: s, the current state of the board (+ optionally previous states)
- Output: *p*, to select the most probable/promising moves
- General idea: reduce the breadth of the tree search

Value deep neural network

- Input: s, the current state of the board (+ optionally previous states)
- Output: v, the probability to win
- General idea: reduce the depth of the tree search

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions		
0000	000000	00000	0000	0000	000		
AlphaZero = I	AlphaZero = Monte-Carlo-Tree-Search $+$ Deep Neural Networks						

Monte-Carlo-Tree-Search (MCTS)	
 Selection 	Simulation
Expansion	Backpropagation

Policy deep neural network

- Input: s, the current state of the board (+ optionally previous states)
- Output: *p*, to select the most probable/promising moves
- General idea: reduce the breadth of the tree search

Value deep neural network

- Input: s, the current state of the board (+ optionally previous states)
- Output: v, the probability to win
- General idea: reduce the depth of the tree search

$\mathsf{AlphaZero} = \mathsf{MCTS} + \mathsf{Policy} \ \mathsf{Net} + \mathsf{Value} \ \mathsf{Net}$

Tree search guided by "intuition" and "expert-knowledge".

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions	
0000	000000	00000	0000	0000	000	
A clustering game						

- Galaxy clusters
- Clusters and computers
- Game trees
- MCTS and AlphaZero
- A clustering game
- Conclusions

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
A clustering gai	me				

Game's board

The cosmic-web graph

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

イロン イヨン イヨン

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
A clustering ga	ame				

Game's board

The cosmic-web graph

Game's goal

Extracting a clustering tree from the graph

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
A clustering g	jame				

Game's board

The cosmic-web graph

Game's goal

Extracting a clustering tree from the graph

Game's move

Create a link between a particle and its best neighbouring candidate

・ロット (日本) (日本)

3

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Using MCTS a	and Neural Nets to	play the clust	ering game		

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

э.

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Using MCTS a	nd Neural Nets to pla	ay the clusterir	ng game		

 \blacksquare Compute the cosmic-web graph ${\cal G}$

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

イロト イボト イヨト イヨト

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Using MCTS ar	nd Neural Nets to pla	w the clusterin	g game		

- Compute the cosmic-web graph $\mathcal G$
- Compute a reference tree \mathcal{T}_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)

• • = • • =

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
				0000	
Using MCTS a	nd Neural Nets to	play the clust	ering game		

- Compute the cosmic-web graph \mathcal{G}
- Compute a reference tree \mathcal{T}_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Using MCTS a	nd Neural Nets to pla	av the clusterin	g game		

- Compute the cosmic-web graph \mathcal{G}
- Compute a reference tree T_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

Galaxy clusters and computers Game trees MCTS and AlphaZero 0000 Coole 00000 Coole 0000 Coole 0000

Preparation using simulations

- Compute the cosmic-web graph *G*
- Compute a reference tree \mathcal{T}_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

 \blacksquare Play the 1-player game using MCTS + Neural Nets to extract a tree ${\cal T}$ from the graph ${\cal G}$

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
				0000	
Using MCTS and Neural Nets to play the clustering game					

- Compute the cosmic-web graph *G*
- Compute a reference tree T_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

- Play the 1-player game using MCTS + Neural Nets to extract a tree ${\cal T}$ from the graph ${\cal G}$
- For each-move use only the information of $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$
| Galaxy clusters | Clusters and computers | Game trees | MCTS and AlphaZero | A clustering game | Conclusions |
|-----------------|------------------------|------------------|--------------------|-------------------|-------------|
| 0000 | 000000 | 00000 | 0000 | 0000 | 000 |
| Using MCTS a | nd Neural Nets to pla | av the clusterin | g game | | |

Preparation using simulations

- Compute the cosmic-web graph $\mathcal G$
- Compute a reference tree T_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

- \blacksquare Play the 1-player game using MCTS + Neural Nets to extract a tree ${\cal T}$ from the graph ${\cal G}$
- For each-move use only the information of $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$
- Compute the reward as a tree-distance d between \mathcal{T} and \mathcal{T}_0 : $d = f(\mathcal{T}, \mathcal{T}_0) \in [0, 1]$

(日本)

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Using MCTS a	nd Neural Nets to pl	av the clusterin	ig game		

Preparation using simulations

- Compute the cosmic-web graph *G*
- Compute a reference tree T_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

- \blacksquare Play the 1-player game using MCTS + Neural Nets to extract a tree ${\cal T}$ from the graph ${\cal G}$
- For each-move use only the information of $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$
- Compute the reward as a tree-distance d between \mathcal{T} and \mathcal{T}_0 : $d = f(\mathcal{T}, \mathcal{T}_0) \in [0, 1]$

Playing phase

 Galaxy clusters
 Clusters and computers
 Game trees
 MCTS and AlphaZero
 A clustering game
 Conclusions

 0000
 00000
 0000
 0000
 0000
 0000
 0000

 Using MCTS and Neural Nets to play the clustering game
 Conclusions
 0000
 0000
 0000

Preparation using simulations

- Compute the cosmic-web graph *G*
- Compute a reference tree T_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

- \blacksquare Play the 1-player game using MCTS + Neural Nets to extract a tree ${\cal T}$ from the graph ${\cal G}$
- For each-move use only the information of $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$
- Compute the reward as a tree-distance d between \mathcal{T} and \mathcal{T}_0 : $d = f(\mathcal{T}, \mathcal{T}_0) \in [0, 1]$

Playing phase

Play the 1-player game using MCTS + Neural Nets on real observations using $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$

イロト イヨト イヨト イヨト

 Galaxy clusters
 Clusters and computers
 Game trees
 MCTS and AlphaZero
 A clustering game
 Conclusions

 0000
 00000
 0000
 0000
 0000
 0000
 0000

 Using MCTS and Neural Nets to play the clustering game
 Conclusions
 0000
 0000
 0000

Preparation using simulations

- Compute the cosmic-web graph $\mathcal G$
- Compute a reference tree T_0 using a physics-based criteria ϕ (distance, gravitational potential, ...)
- Extract observational data from simulation: $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$ (RA, DEC, redshift with error bars, simulated images, ...)

Training phase

- \blacksquare Play the 1-player game using MCTS + Neural Nets to extract a tree ${\cal T}$ from the graph ${\cal G}$
- For each-move use only the information of $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$
- Compute the reward as a tree-distance d between \mathcal{T} and \mathcal{T}_0 : $d = f(\mathcal{T}, \mathcal{T}_0) \in [0, 1]$

Playing phase

- Play the 1-player game using MCTS + Neural Nets on real observations using $\vec{x} = (x_0, x_1, x_2, \cdots, x_{n-1})$
- \blacksquare No need of observational data on ϕ

イロト イヨト イヨト イヨト

	Clusters and computers		MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Combining the	best of both worlds				

Physics-guided machine-learning approach

- Works for any physics-based criteria ϕ and observational data \vec{x} (including images and error bars)
- Builds an "intuition" on ϕ using simulations ($\phi \Leftrightarrow$ How does the game board looks like?)
- No black-box effect anymore

.

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
			0000	
Combining the	best of both worlds			

Physics-guided machine-learning approach

- Works for any physics-based criteria ϕ and observational data \vec{x} (including images and error bars)
- Builds an "intuition" on ϕ using simulations ($\phi \Leftrightarrow$ How does the game board looks like?)
- No black-box effect anymore

Possible cluster definitions based on ϕ

- Physical distance
- Matter density
- Gravitational potential
- Virialization
- Linear combination of all of the above
- **.**..

.

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	•00
Conclusions					

- Galaxy clusters
- Clusters and computers
- Game trees
- MCTS and AlphaZero
- A clustering game

Conclusions

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

医子宫管

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	imate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

イロト イボト イヨト イヨト

э

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	timate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

イロン イヨン イヨン

э

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	timate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

Let simulations run far into the future

イロト イポト イヨト イヨト

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	timate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

- Let simulations run far into the future
- Detect clusters

6th Dark Energy Colloquium - Vincent Reverdy - November 18th, 2022 - Marseille, France

イロト イポト イヨト イヨト

3

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	timate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

- Let simulations run far into the future
- Detect clusters
- Go back in time to z = 0 tracking particles

(I) < (I)

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	timate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

- Let simulations run far into the future
- Detect clusters
- Go back in time to z = 0 tracking particles
- \blacksquare Use this knowledge to build a reference tree ${\mathcal T}$

- - E

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions
0000	000000	00000	0000	0000	000
Towards the ult	timate definition?				

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

- Let simulations run far into the future
- Detect clusters
- Go back in time to z = 0 tracking particles
- \blacksquare Use this knowledge to build a reference tree ${\cal T}$
- \blacksquare Train the algorithm on ${\cal T}$

.

Galaxy clusters	Clusters and computers	Game trees	MCTS and AlphaZero	A clustering game	Conclusions			
0000	000000	00000	0000	0000	000			
Towards the ultimate definition?								

- In $t = +\infty \Rightarrow$ isolated clusters
- All definitions are equivalent

Simulating the end of time

- Let simulations run far into the future
- Detect clusters
- Go back in time to z = 0 tracking particles
- \blacksquare Use this knowledge to build a reference tree ${\cal T}$
- \blacksquare Train the algorithm on ${\cal T}$

Analysis

- Play the game using this criterion
- Use computer science and discrete mathematics to compare $T_i = f(\phi_i)$

Image: A math

A B K A B K

3

	Clusters and computers	MCTS and AlphaZero	A clustering game	Conclusions
				000
Conclusions				

Limitations of machine-learning approaches

- Black-box approaches, hard to interpret and adjust in terms of physics
- Risk of circular definitions

Cluster detection as a computer science problem

- Cosmic-web \Leftrightarrow Graph
- Clusters ⇔ Trees
- Galaxy clustering problem ⇔ Computing Trees on Graphs

The game of cluster detection

- MCTS + Deep Neural Networks = physics-guided machine-learning approach
- Work with arbitrary physics criterion ϕ and observational data \vec{x}

A starting project!

Reach out if you're interested: vincent.reverdy@lapp.in2p3.fr