DESI-II

Christophe Yèche CEA-Saclay Irfu

6ième Colloque National Dark Energy November 18, 2022

Dark Energy Spectroscopic Instrument

DESI Project

Scientific project

- 14000 deg² 3D survey for 0<z<4
- International collaboration
- 74 institutions (46 non-US)
- 650 members

Instrument

4-m telescope at Kitt Peak (Arizona)

- Wide FoV (~ 8 deg²)
- Robotic positioner with 5000 fibers
- 10 spectrographs x 3 bands (blue, visible, red-NIR) →360-1020 nm

Dark Energy Spectroscopic Instrument

6ième Colloque National Dark Energy, November 18, 2022

DESI tracers of the Matter

0.0 < z < 0.4

Dark Energy Spectroscopic Instrument

6ième Colloque National Dark Energy, November 18, 2022

Overview of Cosmology in future years

6ième Colloque National Dark Energy, November 18, 2022

Main science at DESI

Baryonic Acoustic Oscillations (BAO)

- $\sigma(BAO) \sim 0.2 \%$ for 0.0<z<1.1
- σ(BAO) ~0.3% for 1.1<z<1.9
- σ(BAO) ~0.5% for 1.9<z<3.5
- SDSS(BOSS+eBOSS) few % measurements

Redshift Space Distorsion (RSD) ۲

- Multiple few % measurements over wide redshift range (z<2)
- ~10x better compared to SDSS
- **Neutrino masses**
 - $\sigma(\Sigma m_v) \sim 20 \text{ meV}$
 - Current limit : $\Sigma m_v < 100 \text{ meV}$, @ 95 CL
- **Non-Gaussianity** (f_{NL}) ٠
 - $\sigma(f_{NI}) \sim 5$ with k dependence of bias
 - As precise as Planck with a different technique

60

40

20

0

-20

Dark Energy Spectroscopic Instrument

6ième Collogue National Dark Energy, November 18, 2022

post-recor

150

100

80

150

120

200

DESI Timeline – DESI-lb/DESI-II

- DESI-I is ~20% ahead of schedule, DESI should finish in 2025
- 2-3 year transition period \rightarrow **DESI-Ib**
 - Increase of the footprint with same tracers (14000 deg² \rightarrow 17000 deg²)
 - Increase of the number of passes (denser mapping for BGS and ELG)
- Upgrades of the instrument (Installation on site ~6 months)
- **DESI-II** will start in 2028. 5-6 year program.

DESI-II Instrument Upgrades

- Increase of the number of positioners: $5000 \rightarrow 11250$ (3x25x150)
- More spectrographs: $10 \rightarrow \sim 18$
- New CCDs (skipper CCDs): Lower noise \rightarrow less systematics

6ième Colloque National Dark Energy, November 18, 2022

DESI-II - Very dense Low-z Program

6ième Colloque National Dark Energy, November 18, 2022

Very dense Low-z Program - Motivations

DESI-I

- For DESI-I, the dark time tracers were tuned to reach nP(k=0.2)~1
- During Survey Validation, it was demonstrated that DESI can efficiently target many more tracers 1500
- Target density
 - LRG: 600 deg⁻² targets
 - BGS: 850 deg⁻² targets

DESI-II

- Increase of target density up → ~13000 deg⁻²
- Increase of the exposure time → x4 nominal DESI-I time (1000s)

zfiber<X densities exclude LRG and BGS targets

Very dense Low-z Program – Science Case

Multi-tracer approach

- Different tracers with different bias can overcome cosmic variance
- For BGS, factor 3 of improvement

Non-Linear regime

- Probe scales (<10 Mpc/h) very sensitive to modified gravity
- Limited by simulation and modelling

Galaxy-galaxy lensing

- Provide the redshift of "lens" galaxies
- DESIxLSST (or Euclid) $\Delta\Sigma$

Intrinsic alignment of galaxies

- IA is one of the dominant uncertainties in cosmic shear
- BGS and LRG help to probe IA models

6ième Colloque National Dark Energy, November 18, 2022

DESI-II - High-z program

6ième Colloque National Dark Energy, November 18, 2022

Testing Inflation with Non-Gaussianity

Description of the primordial potential Φ

 $\Phi = \varphi + f_{NL}. \, (\varphi^2 - <\varphi^2 >)$

 φ : a gaussian random field f_{NL}: amplitude of the non-Gaussianity

Primordial Non-Gaussianity, a test of inflation

- Primordial fluctuations distributed almost Gaussian with the simplest slow-roll models $f_{NL} \sim O(10^{-3})$
- But many alternative inflation models predict $f_{NL} > 1$
- CMB is cosmic variance limited : $\sigma(f_{NL})$ ~5

3D survey of galaxies

- Scale dependence of the bias at large scales in power spectrum
- Large volume (optimal for high-z), $\sigma(f_{NL}) \sim 1$ (better with bi-spectrum)
- Tracers: star forming galaxies (Lyman break galaxies, Ly- α emitters)

Lyman Break Galaxy (LBG) Ly- α Emitters (LAE)

LBG/LAE with a weak or strong Ly-α line

LBG with only absorption lines

- Spectra observed in DESI during pilot surveys
- Easier identification of LBG/LAE with a Ly- α line
- Precise redshift determined thanks to absorption lines

6ième Colloque National Dark Energy, November 18, 2022

LBG/LAE selections

Two tracers

- LBG: u-dropout with CFIS or LSST(1 or 2 years)
- LAE: narrow/medium band (photometry not available yet)
- Two approaches currently tested in DESI with pilot surveys

Automatic measurement of the redshift

Template fitting

- Stack of spectra
- Add those new templates to the current DESI algorithm, Redrock

Machine Learning, CNN

- Architecture developed for quasar in DESI (QuasarNet)
- Training with LBGs already observed in DESI

Results

- Purity: 95%
- Efficiency: 50%
- Room for improvements

Dark Energy Spectroscopic Instrument

6ième Colloque National Dark Energy, November 18, 2022

Generic LBG Survey for DESI-II

Survey Configuration

- Educated guess from pilot surveys
- Surface: 10 000 deg²
- Eff. exposure time: 2 hours
- LBG Target density: 600 deg⁻²
- LBG with secured redshift: 300 deg⁻²
- Redshift: ~3
- Duration: ~50% of a 6-year program

Survey Forecast

- Bias: 5
- $\sigma(D_a): 0.35\%$
- *σ*(H): 0.65%
- $\sigma(f\sigma_8)$: 4.7%
- In Power Spectrum $\sigma(f_{NL})$: 2 (~5 in DESI-I)

Comparable to DESI-I

in an unknown region

Factor ~2 gain with bi-spectrum

DESI2 Telecon, October 13, 2022

Summary

Science Case

- Low-z at high density survey \rightarrow Dark Matter and Modified Gravity
- High-z survey \rightarrow Inflation and neutrino masses

Timeline

- End of DESI-I ~ 2025
- Transition period with DESI-Ib from 2025 to 2028
- With upgrades of the instrument, DESI-II is scheduled for 2028

DESI-II preparation has already started with many pilot surveys

- Test of target selections (LBG, LAE...)
- Optimization of the effective exposure time for low-z targets
- A first version of DESI-II will be defined by summer 2023

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 69 Participating Institutions!