Euclid Preparation XYZ: Forecasts for 10 different Higher Order Weak Lensing Statistics*

Euclid Collaboration**: Virginia Ajani^{11,14}, Marco Baldi^{3,6,20}, Alexandre Barthelemy¹, Aoife Boyle², Vincenzo Cardone⁴, Sihao Cheng⁵, Sandrine Codis², Carlo Giocoli^{6,20}, Joachim Harnois-Déraps⁷, Sven Heydenreich⁹, Martin Kilbinger¹⁵, Francois Lanusse¹⁶, Laila Linke⁹, Claudio Llinares^{12,13}, Nicolas Martinet¹⁰, Carolina Parroni¹⁷, Austin Peel¹⁸, Sandrine Pires¹¹, Lucas Porth⁹, Ismael Tereno^{12,13}, Cora Uhlemann⁷, Martina Vicinanza¹⁹, Simone Vinciguerra⁴, et al.

Shear two-point correlation function (shear-2PCF)

Shear two-point correlation functior (shear-2PCF)

Evolution of the matter distribution with redshift - Courtesy Sandrine Codis

HOWLS data set

Set of HOWLS simulated mass maps $\Omega_{n=0,2000}$

convergence

 $\Omega_{m} = 0.3260$

 $\Omega_{m} = 0.4000$

Euclid-like redshfit distribution

- 12 cosmologies + SLICS covariance
- Realistic Euclid mocks (n(z), shape noise)
- Kaiser&Squires93 mass maps
- Fisher forecasts
- Data set released with the paper

Summary statistics

Field	Statistics	Abbreviation	Teams
γ	two-point correlation functions	γ -2PCF (ξ_+/ξ)	1(+1)
K	two-point correlation function	κ -2PCF (ξ_{κ})	1 (+2)
К	one-point probability distribution function	κ -PDF (\mathcal{P})	1
К	higher order moments	HOM (\mathcal{M})	2(+2)
$M_{\mathrm{ap}}(\gamma)$	third order moments	$\left< M_{\rm ap}^3 \right>$	1
$M_{ m ap}(\gamma)$	<i>n</i> -th order moments	$\langle M_{\rm ap}^n \rangle$	1
$M_{\rm ap}(\kappa)$	peak counts	peaks (N)	1 (+2)
ĸ	Minkowski functionals	MFs (V_0, V_1, V_2)	1 (+2)
К	Betti numbers	BNs (β_0, β_1)	1 (+2)
$M_{\rm ap}(\gamma)$	persistent homology Betti numbers	pers. BNs (β)	1
$M_{\rm ap}(\gamma)$	persistent homology heatmap	pers. heat. (h)	1
К	scattering transform coefficients	s_1, s_2	1

- - 12 different statistics 12 independent teams

w

Theoretical validation

Towards a combination

- High correlations between statistics
- x5 improvement over shear-2PCF

Perspectives

- HOS significantly improve cosmological constraints
- Most HOS perform similar, but combining them can be beneficial
 - Fisher analyses require assumptions not fulfilled by all probes

HOWLS series of papers:

- **Paper I**: presentation of the data set + first results (*leads: Martinet, Cardone*)
- **Paper II**: + tomography & systematics (*leads: Pires, Tereno*)
- **Paper III**: + emulator & non-Gaussian likelihood (*leads: Harnois-Déraps, Codis*)

Postdoc: <u>https://jobregister.aas.org/ad/61a72ab5</u> PhD: <u>https://jobregister.aas.org/ad/3e4c122d</u> Application deadline: Dec. 5th