

Gravitational waves: a new probe of the large scale structure

Irina Dvorkin

Institut d'Astrophysique de Paris

Sorbonne Université

Colloque Action Dark Energy, Marseille, 18 November 2022

Gravitational waves: a new messenger

- GW: Metric perturbations, propagate with the speed of light
- Generated by time varying mass quadrupole

First detection! GW150914: a binary black hole.

Gravitational-wave observatories

- LIGO (Hanford+Livingston, USA)
- Virgo (Italy)
- Kagra (Japan)
- LIGO-India
- Einstein Telescope (Europe) / Cosmic Explorer (USA)
- LISA (space! ESA+NASA)
- Pulsar Timing Arrays (radio telescopes; Europe+USA+Australia)

LIGO-Virgo GW transient catalogue

Masses in the Stellar Graveyard LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars Solar Masses 20-10 0000 000

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Overview of GW sources

4

[Schutz (1986)]

$$\dot{f}_{obs} \propto \left(\frac{GM_c(z)}{c^3}\right)^{5/3} f_{obs}^{11/3}$$

$$h \propto \frac{1}{d_L(z)} \left(\frac{GM_c(z)}{c^2}\right)^{5/3} \left(\frac{\pi f_{obs}}{c}\right)^{2/3}$$

6

$$h \propto \frac{1}{d_L(z)} \left(\frac{GM_c(z)}{c^2}\right)^{5/3} \left(\frac{\pi f_{obs}}{c}\right)^{2/3}$$

Binary neutron star merger: GW and optical counterpart

[Abbott+2017]

Binary neutron star merger: orbital plane inclination uncertainty

[Abbott+2017]

Dark sirens: no optical counterpart

See also [Chen+2018; Mukherjee+2021; de Sousa+2022...]

Third generation detectors: Einstein Telescope and Cosmic Explorer

10⁵ events per year!

Localization: O(10)-O(100) deg²

A variety of GW sources with LISA

- LISA will detect new types of sources
 - Stellar-mass binaries
 - Massive black hole binaries
 - Extreme mass-ration inspirals
- Hubble diagram out to higher redshifts

Astrophysics with LISA [2203.06016]

Liss

Cosmology with LISA [2204.05434]

Massive black hole binaries

• Expected merger rates $10 - 100 yr^{-1}$

• EM signal?

 $O(1) yr^{-1}$

[e.g. Kocsis+2006; De Rosa+2020; Mangiagli+2022 ...]

[e.g. Dayal+2019; Katz+2019; Barausse, **ID**+ 2020 ...]

How do stellar-mass compact binaries form?

- Isolated massive stellar binaries
- Hierarchical formation in dense stellar systems
- AGN disks

0...

Primordial black holes

- Mass distribution
- Redshifts
- Host galaxies
- EM signal?

Cross-correlating GW and galaxy counts

- Stellar-mass black hole binaries: biased tracer of the galaxy distribution
- Cross-correlate the distribution of GW events and the sky-projected spatial distribution of galaxies
- Assume galaxy bias is known
- Constrain the bias of GW events

See also [Scelfo+2020, Libanore+2021, Mukherjee+2021]

A variety of new methods to study GW and LSS

H0 determination using the spectrum of merging black holes ('spectral sirens')

 $M_c(z) = (1 + z)M_c$ [Mastrogiovanni+2021; Ezquiaga&Holz 2022]

- Weak lensing of GW sources
 [Congedo&Taylor 2018; Balaudo+2022]
- BAO with neutron star mergers (with ET)
 [Kumar+2022]
- Anisotropic stochastic backgrounds

[e.g. Bartolo+2019; Cusin, **ID**, Pitrou, Uzan 2019; Jenkins+2019; Bertacca+2020; Ricciardone+2021; Bellomo+21...]

Astronomy"

Conclusions

- New interesting science to be done with GW!
- Standard sirens can be used to constrain cosmological parameters.

Caveat: expect few EM counterparts, will need to rely on dark sirens.

- GW sources are a new biased tracer of the galaxy distribution.
- Synergy between GW and EM observatories is crucial

