

Neutrinos in cosmology

Neutrinos in particle physics

At the time the Standard Model of particle physics was constructed, it was assumed that:

- neutrinos have exactly zero mass;
- three neutrinos: one for each of the three charged leptons;
- lepton number is conserved separately for each of the three lepton families;
- neutrinos and antineutrinos are distinct;
- all neutrinos are left-handed.

Mass

- Fermions only have intrinsic mass because of interactions with the Higgs field (but require both left- and right-handed)
- Neutrinos acquire mass through the seesaw mechanism (right-handed neutrinos with very large Majorana masses are added)

Oscillations

• Neutrino oscillation arises from mixing between the flavor and mass eigenstates of neutrinos

Neutrino mixing

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} e^{i\eta_1} & 0 & 0 \\ 0 & e^{i\eta_2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Experiment	Dominant	Important
Solar Experiments	θ_{12}	Δm^2_{21} , $ heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12} \;, heta_{13}$
Reactor MBL (Daya-Bay, Reno, D-Chooz)	$\theta_{13}, \Delta m^2_{31,32} $	
Atmospheric Experiments (SK, IC-DC)		$ \theta_{23}, \Delta m^2_{31,32} , \theta_{13},\delta_{\rm CP} $
Accel LBL $\nu_{\mu}, \bar{\nu}_{\mu}$, Disapp (K2K, MINOS, T2K, NO ν A)	$ \Delta m^2_{31,32} , \theta_{23} $	
Accel LBL $\nu_e, \bar{\nu}_e$ App (MINOS, T2K, NO ν A)	$\delta_{ m CP}$	$ heta_{13}\;, heta_{23}$

[de Salas et al., Phys. Letter B 782 633-640 (2018)]

Current constraints from global analysis $\Delta m^2_{21} \approx (7.55 \pm 0.2) \cdot 10^{-5} eV^2$ | Δm^2_{31} | $\approx (2.50 \pm 0.03) \cdot 10^{-3} eV^2$

Neutrino ordering

 constraints on the sum of neutrino masses have consequences on the neutrino ordering

no measurement of the neutrino mass scale, but at least two masses neutrinos today

Neutrinos in cosmology

[Lesgourgues & Pastor, Phys. Rep. 2016]

Neutrinos in cosmology

Effective number relativistic species

[Lesgourgues & Verde, PDG (2019)]

Effective number relativistic species

CMB sensitive to the number of relativistic species at decoupling

- standards neutrinos : $N_{eff} = 3.045$
- confuse situation since WMAP + SPT + ACT...

$$\rho = N_{\text{eff}} \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \rho_{\gamma}.$$

Neff constraints

 $N_{\rm eff} = 2.99^{+0.34}_{-0.33}$

Current constraints from Planck

+BAO).

[Planck 2018 results. VI]

Allowing for massive sterile neutrino (m_v < 2 eV)

(95%, TT,TE,EE+lowE+lensing

 $N_{\text{eff}} < 3.34,$ $m_{\nu, \text{ sterile}}^{\text{eff}} < 0.23 \text{ eV},$ $\begin{cases} 95\%, Planck \text{ TT,TE,EE+lowE} \\ +\text{lensing+BAO.} \end{cases}$

one thermalised sterile neutrino is excluded at 6σ irrespective to its mass

Neff in practice

[Henrot-Versillé et al., A&A 623 A9 (2019)]

systematics

- Boltzmann code
- Likelihood systematics
- Statistical analysis systematics

	Planck L +lowTEB+BAO	Config	$N_{\rm eff}$
1	PlikALL [#]	MCMC/CAMB	3.04 ± 0.18
	Boltzmann code and sampler systematics		
2	PlikALL	MCMC/CLASS	$3.03_{+0.17}^{-0.17}$
	Likelihood systematics		
3	CamSpecALL [#]	MCMC/CAMB	2.89 ± 0.19
4	hlpALL	MCMC/CLASS	$2.92^{-0.15}_{+0.15}$
5	hlpALLps	MCMC/CLASS	$2.86_{+0.15}^{-0.14}$
	Statistical analysis systematics		
6	PlikALL	Profile/CLASS	$3.00^{+0.19}_{-0.20}$
7	hlpALL	Profile/CLASS	$2.87^{+0.15}_{-0.14}$
8	hlpALLps	Profile/CLASS	2.85 ± 0.14
9	hlpALLps (Plik-like)	Profile/CLASS	$2.90^{+0.17}_{-0.16}$

Neutrino mass scale

[Lesgourgues & Verde, PDG (2019)]

Constraints on Sm_v

Huge improvement in the last two decades

Neutrino mass constraints

[Lesgourgues & Verde, PDG (2019)]

	Model	95% CL (eV)	=
CMB alone			-
Pl18[TT+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.54	[Planck 2018 results. VI]
Pl18[TT,TE,EE+lowE]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.26	[Planck 2018 results. VI]
CMB + probes of background evolution			_
Pl18[TT+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.16	[Planck 2018 results. VI]
Pl18[TT,TE,EE+lowE] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[Planck 2018 results. VI]
CMB + LSS			-
Pl18[TT+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.44	[Planck 2018 results. VI]
Pl18[TT,TE,EE+lowE+lensing]	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.24	[Planck 2018 results. VI]
$\overline{\text{CMB} + \text{probes of background evolution} + \text{LSS}}$			-
Pl18[TT+lowE+lensing] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.13	[Planck 2018 results. VI]
Pl18[TT,TE,EE+lowE+lensing] + BAO	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.12	[Planck 2018 results. VI]
Pl18[TT,TE,EE+lowE+lensing] + BAO+Pantheon	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.11	[Planck 2018 results. VI]
$Pl18[TT, TE, EE+lowE+lensing] + BAO+Lyman-\alpha$	$\Lambda \text{CDM} + \sum m_{\nu}$	< 0.09	[Palanque-Delabrouille et al. (2020)]

Neutrino ordering

Neutrino ordering

• with increasing sensitivity, reaching now $\sigma(\Sigma m_v) \sim 0.05 \text{ eV}$

Can we already rule-out the Inverted Ordering (IO) ?

Bayesian evidence using cosmology + laboratory (oscillations, KATRIN) data:

- Jimenez et al. (03.2022) "Strong if not decisive evidence for NO"
- Gariazzo et al. (05.2022) "No conclusive evidence for NO"

not yet...

Model dependance

[Couchot et al. (2017)]

M. Tristram

Neutrino mass in practice

[Choudhury & Hannestad (2019)]

[Couchot et al. (2017)]

0.17

 1.19 ± 0.09

PlikTT

Neutrino mass in practice

[Palanque-Delabrouille et al. 2020]

• Ly-a tension n_s - Ω_m shows up on the neutrino sector

Prospects

- Future LSS surveys: DESI, Euclid, LSST, SPHEREx, SKA...
- Future CMB observations: Simons Observatory (SO), CMB-S4, LiteBIRD
 - better measurement of the CMB lensing
 - cluster count
 - SZ measurement
- But also "oscillation" experiments
 - beta-decay KATRIN (limited)
 - JUNO, T2HK
 - DUNE through the sign of Δm_{31} and δ_{CP}

Forecasts Σm_v

• Short-term: ~2025

- DESI+Euclid+Planck $\sigma(\Sigma m_V) \sim 20 \text{ meV}$
- limited by $\sigma(\tau) = 0.006$
- 3-4 σ on neutrino masses

• Mid-term: ~2030

- DESI/LSST+CMB-S4+LiteBird $\sigma(\Sigma m_V) \sim 15 \text{ meV}$
- $4-5\sigma$ on neutrino masses

• Long-term: ~2035

- MSE+CMB-S4 $\sigma(\Sigma m_V) \sim 8 \text{ meV}$
- Mass hierarchy at ~5σ

Forecasts Neff

[CMB-S4 Science Case (2019)]

• Light relics

 $\sigma(\text{Neff}) = 0.013 \text{ for } 2\sigma \text{ threshold}$ sensitivity to any light thermal relic (massless particle decoupling at T_F)

 $\sigma(N_{eff}) \sim 0.05 (SO) \\ \sigma(N_{eff}) \sim 0.03 (CMB-S4)$

Prospects

- Future LSS surveys: DESI, Euclid, LSST, SPHEREx, SKA...
- Future CMB observations: Simons Observatory (SO), CMB-S4, LiteBIRD
 - better measurement of the CMB lensing
 - cluster count
 - SZ measurement
- But also "oscillation" experiments
 - beta-decay KATRIN (limited)
 - JUNO, T2HK
 - DUNE through the sign of Δm_{31} and δ_{CP}
 - Cosmological measurements are model dependant
 - Neutrino impact is small and correlated with other type of effects (cosmological and systematics)
 - Tensions between datasets can create bias in the neutrino constraints

need to be very conservative and propagate all relevant uncertainties when considering cosmological constraints on the neutrino sector