

The Euclid mission: status and prospects

Stéphanie ESCOFFIER

Centre de Physique des Particules de Marseille

Colloque national Atelier Dark Energy 2022 17-18 novembre 2022

Acknowledgments

- All Euclid material and forecasts shown on behalf of the Euclid Consortium
- Many thanks to all collaborators in Euclid
- As inevitable, a biased review. Apologies in advance to all doing great work that could not make it into this talk

2897100 Iv-

0465300 ly

Galaxy redshift surveys

Galaxy surveys

L. Tresse's talk

Teuchd

4

The stage-IV redshift galaxy surveys

Galaxy redshift surveys

> galaxies number x10 / decade

Galaxy clustering

Euclid is a ESA space mission

Weak lensing

NISP Instrument

VIS Instrument

Galaxy Clustering probe

Baryon Acoustic Oscillation (BAO)

BAO provide a characteristic scale "frozen" in the galaxy distribution: standard ruler

Eisenstein et al. 2005

BAO provide measurement of :

- the expansion rate H(z)
- the angular diameter distance $D_M(z)$

Redshift Space Distortions (RSD)

Related to the linear growth rate of structure f(z):

$$f \equiv \frac{d \ln G}{d \ln a} \approx \Omega_m(z)^{\gamma}$$

 $\gamma = 0.55$ in GR

Powerful tool to constrain possible deviations from GR

Galaxy Clustering probe

7

Weak lensing probe

Weak lensing effect cannot be measured from any individual galaxy. Must be measured statistically over many galaxies.

Euclid: unveiling gravity and dark energy

Combination between GC and WL

$$ds^{2} = -(1 + 2\Psi)dt^{2} + (1 - 2\Phi)a^{2}dx^{2}$$

Matter gravitational potential

Galaxy Clustering measures Ψ \rightarrow measures fo₈ and bo₈

Light gravitational potential

Galaxy lensing measures $\Psi+\Phi$ \rightarrow measures b and σ_8

In General Relativity, $\phi = \phi$

Weak Lensing and Galaxy Clustering are very complementary:

- g-g lensing and galaxy clustering of same foreground galaxies allows breaking degeneracies between cosmological parameters and galaxy bias
- One can also defined combined observables (e.g. E_G)

$$E_G = \left[\frac{\nabla^2 (\Psi - \Phi)}{3H_0^2 a^{-1} f \delta} \right]$$
 Zhang et al 2007

Jullo et al. 2017

2897100 ly

0465300 ly

The Euclid mission

Euclid payload: two instruments for two probes

Photo: courtesy ESA/TAS

VIS Instrument: FM delivery in March 2020

Focal Plane

Focal plane instrument, no optics; limiting magnitude: mAB=24.5 extended sources at 10o spectral range λ: 550–<u>900nm</u> focal plane: 6x6 CCDs (e2v, 12x12µm2 pixels, 4096x4096 pixels) plate scale: 0.1 arcsec/pix FOV: FoV=0.787x0.709 deg2 focal length: f=24.5 m Datarate: ≤ 520 Gb/day

Partners

IAS -

NISP Instrument: FM delivery in May 2020

Focal Plane

Based on Teledyne H2RG detectors 2048 x 2048 pixels Pixel sizel : 18 µm Spectral band: 0,9 µm – 2 µm Focal plane cooled to 90K

The focal plane contains 16 H2RG, or about 64 million pixels!

Partners

+ Italy, Spain, Germany, Norway, Denmark, Belgium, NASA (detectors)

PSF verification

The infrared camera, the largest ever launched into space, will provide measurements of unprecedented accuracy.

Euclid data are complex: slitless spectroscopy

Slitless mode critically different from traditional redshift surveys with MOS (eBOSS, DESI, 4MOST, ..)

Euclid NISP-S simulated exposure, with H_{α} lines marked

Euclid: dual wide-field imager

A panchromatic view

*Blue grism is exposed on Deep fields only

	VIS	Y	J	Н	Grism
Wide	24.5	24	24	24	2 10 ⁻¹⁶ erg/s/cm ²
Deep	26.5	26	26	26	2 10 ⁻¹⁷ erg/s/cm ²

(slide by Ben Granett)

2 billion galaxies observed in visible and infrared photometry

50 million infrared spectra between 0.9 < z < 2

17

The Scientific Ground Segment (SGS)

- 1 Centre de Calcul de l'IN2P3 Lyon France
- 2 Astronomical Observatory of Trieste Italie
- 3 Institute for Astronomy Edimbourg Royaume–Uni
- 4) Max-Planck-Institute for Extraterrestrial Physics Münich Allemagne
- 5 University of Helsinski Finlande
- 6 Donald Smits Centrum voor Informatie Technologie Gröningen Pays-Bas
- 7) Département d'astronomie de l'université de Genève Suisse
- 8 Port d'Informació Científica Barcelone Espagne
- 9) IPAC, Caltech , Pasadena Californie USA

More than 170 million gigabytes of data! 30% will be processed in the Science Data Center (SDC) France: CC-IN2P3

The Euclid Data Products

Archive System (EAS).

external surveys

Spectroscopic Redshift for 40 million galaxies

Euclid is ready !

July 2022 @ Thales-AleniaSpace premises in Turin

November 2022 @ Thales-AleniaSpace in Cannes

Flight model fully assembled

Test the thermal conditions inside the vacuum chamber in Thales's clean room

Euclid: Timeline

- The launch was scheduled for 2023 with Soyuz: agreement broken with the Russian Agency in the spring 2022
- The official launcher became Ariane 6.2, but need 2 successful launches (2024-2025)
- ESA agreement to launch Euclid with a Space X Falcon 9 in July 2023

2897100 IV-

Science with Euclid: some selected topics

Euclid Flagship simulation: mock galaxy catalog

25

Forecasts of scientific performances

REFERENCE PAPER: A. Blanchard & Euclid Consortium, 2020

Forecasts of scientific performances

REFERENCE PAPER: A. Blanchard & Euclid Consortium, 2020

Probe combination is key to high precision !

1% error

The GC SWG will achieve the science requirements by:

- Understanding observational and model systematics
- Extracting more information from the data
 - Improved estimators
 - Alternative statistics
 - Combination with other data
- Preparing for a joint likelihood analysis of multiprobe Euclid data

WP : Higher order

- Higher-order correlation functions of the large-scale structure are necessary to "quantify" the filamentary nature of the galaxy and matter density distributions.
- Combine P(k) and B(k)
 Likelihood analysis of P+B in terms of bias & cosmological parameters with full covariance from Pinocchio mocks
- Include redshift-space distortion constraints (multipoles)
- Three-point statistics in combination with two-point statistics allows in principle removing bias degeneracy

(Moretti, Sefusatti+, in prep.)

WP : Photo-z clustering

Galaxy Clustering with photometrically-selected galaxies (GCph)

Optimizing the Euclid sample of galaxies detected with photometric techniques

Bins with equal width in redshift provide a higher Figure of Merit (FoM) than equipopulated bins

Forecasts for the combination GCph + WL

Pocino, Tutusaus & Euclid Consortium, 2021

WP : Photo-z clustering

Super Sample Covariance:

If we sit in an over-(under-) density, the clustering is damped

- ➔ Non-linear coupling between large scales and small scales
- SSC arises from the fact that we observe a limited portion of the Universe

→ Non negligible difference between full-sky and partial-sky for unmarginalised constraints

Gouyou Beauchamps et al. 2021

WP : Photo-z clustering

Super Sample Covariance:

If we sit in an over-(under-) density, the clustering is damped

- ➔ Non-linear coupling between large scales and smal^C
- SSC arises from the fact that we observe a limited portion of the Universe
- SSC has a significant impact on Dark Energy constraints
 - → -50% on the FoM for 3x2pt

Scotti, Gouyou Beauchamps & Euclid Consortium 2022, in prep

Cosmic voids statistics

WP : Voids

Combined Alcock-Paczynski & RSD void analysis

Euclid forecasts

Hamaus, Aubert & Euclid Consortium, 2022

Cosmic voids statistics

WP : Voids

Void size distribution function

Euclid forecasts

Contarini, Verza & Euclid Consortium, arXiv:2205.11525

Scientific objectives

Other cosmological probes Two primary probes Galaxy **Clusters of galaxies** Weak lensing Sugar clustering X-CMB Stronng lensing Theory Legacy science SNe & transients Local Universe **Primeval Universe** Exoplanets Galaxie Milky Way Solar system evolution

CMBX SWG

CMBX Forecasts paper

Ilic & Euclid Consortium, 2022

Planck+SO and Euclid-ph-like

Bermejo-Climent et al., 2021

Euclid only Euclid + CMB φ Euclid + full CMB Exploiting CMB-Euclid cross-correlation and CMB in extended cosmologies

Summary & Conclusions

Summary & conclusions

Euclid should provide exciting data for the understanding of the evolution of the Universe, constraints on gravity, distribution on dark matter, neutrinos mass, primordial non-gaussianities, ... but also for a large variety of legacy science, which is also important for primary cosmology.

All scientific aspects are already well organized within Euclid Consortium, and many results from simulations or external data have already been obtained or are still being produced.

Euclid Pre-launch papers:

215 science Key Papers + 70 technical Key Papers

+ all Standard Euclid papers...

2897100 ly-

Thank you

The Euclid Consortium community in 2022

